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Abstract

Thermography for photovoltaic (PV) plants is hindered by a critical trade-off: opera-
tors must choose between opaque, proprietary cloud platforms that compromise data
sovereignty and fragmented, impractical open-source tools. This thesis resolves this
dilemma by introducing the PV Anomaly Detection Suite, a novel, end-to-end software
solution architected for local, privacy-preserving operation.

The system leverages a robust orthomosaic-centric workflow, combining computation-
ally efficient computer vision for panel detection with machine learning for radiometric
anomaly classification on standard hardware. Validated across 13 diverse PV plants,
the suite achieved a panel detection rate exceeding 99.42% and demonstrated robust
defect classification. The primary contribution is a practical, user-friendly tool that pro-
vides operators with immediate, on-site analytics, bridging the gap between commercial
services and academic projects while empowering future research through a powerful
dataset creation framework.

Abstract

La termografia per gli impianti fotovoltaici (FV) € ostacolata da un compromesso critico:
gli operatori devono scegliere tra piattaforme cloud proprietarie e opache, che com-
promettono la sovranita dei dati, e strumenti open-source frammentati e poco pratici.
Questa tesi risolve tale dilemma introducendo la PV Anomaly Detection Suite: una
nuova soluzione software end-to-end, progettata per un’operativita locale e a tutela
della privacy.

[l sistema si basa su un robusto flusso di lavoro incentrato su ortomosaici, combinando
algoritmi di computer vision computazionalmente efficienti per il rilevamento dei pan-
nelli con il machine learning per la classificazione di anomalie radiometriche su hard-
ware standard. Validata su 13 diversi impianti FV, la suite ha raggiunto un tasso di
rilevamento dei pannelli superiore al 99.42% e ha dimostrato una classificazione dei
difetti robusta. Il contributo principale & uno strumento pratico e di facile utilizzo che
fornisce agli operatori analisi immediate e in loco, colmando il divario tra i servizi com-
merciali e i progetti accademici e, al contempo, potenziando la ricerca futura tramite un
potente framework per la creazione di dataset.
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Chapter 1

Introduction

The proliferation of utility-scale photovoltaic (PV) plants, has introduced a critical challenge:
ensuring decades-long operational reliability. The economic viability and environmental sus-
tainability of these assets are directly contingent on maximizing their energy yield and op-
erational lifespan, which necessitates advanced methods for Operations and Maintenance
(O&M).

Unmanned Aerial Vehicle (UAV) thermography has become the industry standard for rapid,
large-scale PV inspection, providing the raw data needed to identify performance-inhibiting
thermal anomalies. This technological advance, however, has shifted the bottleneck from
data acquisition to data analysis. The sheer volume of imagery generated makes manual
inspection untenable, creating an urgent need for automated, algorithm-driven diagnostic
systems.

The current ecosystem of automated solutions presents operators with no choice. Commer-
cial, cloud-based platforms offer polished user experiences but operate as "black boxes,"
requiring the surrender of sensitive operational data to third-party servers and introducing
concerns of privacy and vendor lock-in. Conversely, the existing open-source alternatives
are often fragmented, lack robust end-to-end functionality, and remain at the level of aca-
demic proof-of-concept. This creates a significant research and utility gap for a tool that is
at once powerful, private, transparent, and practical for field deployment.

This thesis bridges this gap by presenting the design, implementation, and validation of a
novel, end-to-end PV Anomaly Detection Suite. It delivers a complete, locally-executable
software solution that provides operators with powerful analytical capabilities without com-
promising data sovereignty. By integrating efficient computer vision and machine learning
within a user-friendly, orthomosaic-centric workflow, this work provides a practical alterna-
tive to existing solutions. This dissertation will detail the problem domain, review the state
of the art, present the system’s methodology and experimental results, and conclude by
discussing its possible future contributions to the field of automated PV diagnostics.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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Chapter 2

The Problem Domain: PV Inspection,
Defectology and Thermography

2.1 Importance of Reliability in Photovoltaic Systems

The installed PV capacity has grown exponentially in the last few years, surpassing 2 ter-
awatts (TWp)'. This expansion highlights the critical importance of ensuring the long-term
reliability, performance, and safety of these assets®. The economic viability and environ-
mental promise of solar energy are intrinsically linked to the operational integrity of PV sys-
tems. Financial models depend on predictable and uninterrupted energy generation, while
the technology’s green credentials hinge on a long operational life to compensate the initial
environmental investment®“. Defects and premature failures pose a systemic threat to this
paradigm?®.

This chapter presents a comprehensive review of these threats, focusing on the thermal
anomalies that serve as their primary indicators®. It aims to establish the theoretical foun-
dation for advanced diagnostic methodologies by first quantifying the economic and envi-
ronmental impacts of performance loss’. Subsequently, a detailed taxonomy of PV defects
is provided, outlining their physical origins and characteristic thermal signatures®. The prin-
ciples of thermographic inspection, as governed by international standards, highlighting the
crucial limitations of existing public datasets that hinder the development of robust artificial
intelligence models %10,

2.2 Impact of Performance Loss in PV Plants

The significant consequences of PV system under-performance, which affect financial sta-
bility, environmental lifecycles, and operational integrity, highlights the need for robust defect
detection®.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography
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2.2.1 Economic Implications of Underperformance and Degradation

The PV global industry lost from underperforming assets an estimated $4.6 billion in 2023
and this number is projected to approach $15 billion in 2025'". The average annual rev-
enue loss per megawatt (MW) has surged from $977/MW in 2020 to $5,720/MW in 2024,
indicating a worsening financial impact per unit of capacity >. This underperformance di-
rectly erodes project profitability; a 100 MW site with a 5.77% underperformance rate could
see a 249 basis point reduction in its internal rate of return (IRR) 2.

The Levelized Cost of Energy (LCOE) is highly sensitive to degradation rates'®. While
financial models often assume a 0.5% annual degradation, field data suggests a median
system-level rate of 1.3%/year®. An increase in the degradation rate from 0.5% to 2.5%
can elevate the LCOE by over 30% in favorable economic conditions and by 103.2% in less
favorable scenarios 1314,

Losses are distributed throughout the system, with inverters (2.13%), string-level issues
(1.26%), and combiner boxes (1.04%) being the largest contributors, challenging the per-
ception that modules are the sole concern2. In the U.S., inverters are responsible for 39%
of total power loss 2. This problem is exacerbated by a widening "O&M Gap": for example
from 2018 to 2023, U.S. solar capacity grew by 182%, while O&M employment grew by only
91%'2. This structural imbalance highlights the unscalability of manual maintenance and
creates a powerful economic need for automated diagnostic technologies '°.

2.2.2 Environmental and Life Cycle Considerations

The environmental benefits of PV technology depend on a long and productive operational
life*. The manufacturing process is energy- and resource-intensive, requiring materials like
high-purity silicon and involving hazardous chemicals such as lead*'®. Consequently, a
solar panel has an energy payback time (EPBT) of 2-3 years, the period it must operate to
offset the energy consumed during its production®. Defects that cause premature failure
may prevent a panel from repaying this environmental "debt" .

This issue is more evident at the end-of-life (EOL) stage, with the PV waste stream projected
to reach 78 million tons by 2050“. Current recycling infrastructure is inadequate, and most
EOL panels end up in landfills, where hazardous materials can leach into the environment 8.
From a Life Cycle Assessment (LCA) perspective, module reliability is an imperative, as the
"use" phase is where the initial environmental impacts are reduced the most'%20. Defects
shorten this phase, increasing the relative environmental burden of manufacturing and EOL
management?'. Therefore, asset longevity is a fundamental prerequisite for solar energy to
be a truly sustainable solution®.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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2.3 Taxonomy of Photovoltaic Defects and Failure Modes

A good understanding of failure modes is essential for developing effective diagnostic tools®.
This section provides a detailed taxonomy of PV defects, from the cell to the system level,
outlining their physical origins, impacts, and characteristic visual and thermal signatures?®.

2.3.1 Cell-Level Defects and Anomalies
2.3.1.1 Hotspots

A hotspot is a localized area of a module operating at a significantly elevated tempera-
ture??. It occurs when current from healthy cells is forced through a damaged or shaded
cell, causing it to become reverse-biased and dissipate power as heat?>. Common causes
include micro-cracks, partial shading, soiling and manufacturing defects®. Hotspots are a
severe failure mode, capable of causing permanent burn marks, glass breakage, and fire
risk8. Thermally, a hotspot appears as a well-defined square area of high temperature; a
AT greater than 15 °C above adjacent cells is considered a serious defect®#25.

Figure 2.1: Example of a hotspots defects from soiling in the bottom corners of solar panels

2.3.1.2 Micro-cracks

Micro-cracks are microscopic fractures in the silicon wafer caused by mechanical or ther-
momechanical stress during manufacturing, transport, or operation (e.g., from heavy snow

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography
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or wind)®26_ While some cracks have a negligible effect, those that electrically isolate a
portion of the cell cause direct power loss and can lead to severe hotspot formation&27.
They are typically invisible to the naked eye but can be detected using electroluminescence
(EL) imaging, where they appear as dark, non-emissive lines®2°, Their thermal signature
is often indirect, manifesting as the hotspot they induce?+<0.

2.3.1.3 Snail Trails

Snail trails are a form of discoloration on the cell surface resulting from a chemical reaction
between moisture, the silver paste of the grid fingers, and the encapsulant®'32. Moisture
ingress often occurs through pre-existing micro-cracks32. While the direct power loss from
snail trails is minor (<2%), their presence is a strong indicator of underlying micro-cracks,
which can cause significant power loss and hotspots 435, Visually, they appear as thin, dark
lines following the cell's grid pattern2®. Thermally, the signature is that of the underlying
defect, often a hotspot36:37,

2.3.1.4 Potential-Induced Degradation (PID)

PID is caused by leakage currents flowing from the cells to the grounded module frame,
driven by a high voltage potential®. It is exacerbated by high temperature and humidity
and can lead to severe power loss, in some cases exceeding 50%3838. While invisible in
its early stages, PID exhibits a highly characteristic thermal pattern: a "checkerboard" or
patchy arrangement of heated cells, typically starting at the modules located at the electri-
cally negative end of a string of panels in series®428,

22 121120119 (18 |17 |16 | 15|14 | 13| 12

Figure 2.2: Potential-Induced Degradation (PID). (Top) Disposition of the panels in the string.
(Bottom) Infrared thermogram showing the characteristic "checkerboard" pattern of moder-
ately heated cells near the negative side of the string.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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2.3.1.5 Interconnect Failures

Failures in the solder joints connecting interconnect ribbons to cell busbars can result from
manufacturing defects or thermomechanical fatigue®. A disconnected ribbon creates an
open circuit, causing a significant drop in power output ( 35% for one failed ribbon)8. An
incomplete break can create a point of high resistance, leading to arcing, intense heat, and
a high fire risk®8. The thermal signature is typically a very localized and intense hotspot at
the point of the failed connection?8.

2.3.2 Module-Level Degradation and Failures

2.3.2.1 Encapsulant Delamination and Bubbles

Delamination is the loss of adhesion between module layers (e.g., glass-EVA or EVA-cell),
often initiated by manufacturing defects and exacerbated by moisture and heat?338, |t re-
duces light transmission and creates pathways for moisture ingress, leading to corrosion&3°,
Visually, it appears as "milky" or cloudy patches?3. Thermally, delaminated areas appear as
irregularly shaped warmer regions due to the insulating effect of trapped air impeding heat
dissipation?2.

2.3.2.2 Encapsulant Discoloration (Browning/Yellowing)

Long-term exposure to UV radiation and high temperatures can chemically degrade the EVA
encapsulant, causing it to turn yellow or brown®4°. This discoloration reduces transparency,
leading to a gradual reduction in power output*'. Localized discoloration is a strong indicator
of an underlying hotspot, as the higher temperature accelerates the chemical degradation
of the encapsulant above it*2.

s 3
n (=Y

g

Temperature (°C)

g

|-
9
o

55.0

Figure 2.3: Encapsulant discoloration. (Left) Visual image showing browning of the encap-
sulant over a cell. (Right) Thermogram confirming that the discolored cell is operating as a
hotspot.
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2.3.2.3 Backsheet Degradation

The backsheet provides mechanical protection and electrical insulation®. Degradation from
UV, temperature, and humidity can cause cracking, delamination, or chalking*®. This is a
critical failure, as it compromises the module’s primary insulation, creating a severe electric
shock hazard and allowing moisture ingress that can lead to ground faults and string out-
ages*+*5. While it has no direct thermal signature detectable from the front, its secondary
effects (hotspots, hot strings) are visible?8.

2.3.2.4 Glass Breakage

Module glass can break from external impacts (e.g., hail) or manufacturing flaws 647, This
results in a complete loss of environmental protection, leading to rapid corrosion, short
circuits, and a significant safety hazard?®.

2.3.3 Balance-of-System (BOS) and Component Faults

2.3.3.1 Bypass Diode Failure

Bypass diodes protect cell substrings from hotspot formation when shaded?*. A short-
circuited diode causes a fixed power loss (typically 33% or 66%) and produces a clear
thermal signature: the entire substring appears as a uniformly heated rectangle?*.

Figure 2.4: Bypass diode failure. The thermogram shows one-third of the module uniformly
heated, a classic signature of a short-circuited or active bypass diode.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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2.3.3.2 Junction Box and Connector Faults

High-resistance connections in junction boxes or module connectors, caused by poor instal-
lation or corrosion, dissipate energy as heat®. This can lead to significant power loss and
represents a major fire hazard3®. The thermal signature is a distinct, intense, and highly
localized hotspot centered on the faulty component?S.

2.3.3.3 String and Inverter-Level Anomalies

An entire string of modules can go offline due to a blown fuse, disconnected cable, or inverter
malfunction®. This results in a total loss of power from that string®. The thermal signature
is unambiguous: the entire string of modules appears uniformly hot, as the sun’s energy is
converted in heat instead of electricity, creating a stark contrast with adjacent, operational
strings 4.

2.4 Thermography Standards and Data Availability

Infrared thermography is the preeminent non-destructive technique for inspecting PV plants,
as nearly all failure modes alter a module’s thermal behavior*84°. However, acquiring reli-
able data requires adherence to rigorous standards®.

2.4.1 The IEC 62446-3 Standard for Outdoor Infrared Thermography

To ensure data is valid and comparable, inspections must follow the IEC 62446-3 stan-
dard®®. Key requirements include:

« Solar Irradiance: A minimum of 600 W/m2 is required to ensure sufficient current flow
to reveal thermal anomalies®’.

+ Environmental Conditions: Inspections need clear sky conditions, as passing clouds
create thermal transients. High wind speeds (> 10 m/s) should be avoided as they can
cool the module surface and mask defects®’.

» Viewing Angle and Reflections: The camera should be positioned as close to per-
pendicular to the module surface as possible to avoid emissivity errors and, crucially,
to prevent solar reflections from obscuring the thermal data?®.
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Figure 2.5: Comparison of thermographic inspection practices. (Right) An image acquired
under standardized conditions (high irradiance, no clouds, near-perpendicular view). (Left) A

poor quality image compromised by bad camera angle and sun glares, rendering it unusable
for diagnostics.

2.4.2 Data Acquisition: Manual vs Autonomous Aerial Systems

Manual, handheld inspections are time-consuming, costly, and pose safety risks, often
leading to incomplete sampling of large plants'®%2. Unmanned Aerial Vehicles (UAVs)
equipped with radiometric thermal cameras have revolutionized PV inspection®®. Drones
offer high speed (10 minutes/MW vs. 2-5 hours/MW for manual), 100% module coverage,
highly repeatable data quality ideal for repeated analysis in time, and significantly enhanced
safety®3-%. This automated, standards-compliant data acquisition is an essential prerequi-
site for robust Al-based analysis®/°8,

While drone-based thermography solves data acquisition, it creates a data analysis bottle-
neck, creating the need for research into automated pipelines using machine learning®°.
However, the progress of these researches is critically hampered by the quality of public
datasets 1060,

2.4.3 Analysis of Public Datasets for Model Development

Robust and generalizable Al models depend on large, diverse, high-quality public datasets,
which represents a major bottleneck in the PV diagnostics field®'3. A review of existing
public datasets reveals several pervasive limitations:

» Lack of Radiometric Data: Most public datasets consist of 8-bit JPEG or PNG im-
ages where pixel values represent a color map, not temperature®—%8. A model trained
on these learns color patterns, not physical temperature patterns, making it extremely
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brittle and unable to perform quantitative analysis®. The scarcity of public datasets
containing true radiometric temperature data is a major impediment to progress ’°.

» Lack of Standardization: Many datasets are collected without adherence to the IEC
62446-3 standard, introducing significant noise from variable environmental condi-
tions’"72. Models trained on such inconsistent data learn spurious correlations and
fail to generalize to real-world field conditions 7374,

* Poor Annotation and Imbalance: Datasets often suffer from inaccurate labeling, a
limited number of defect classes, and severe class imbalance, making it difficult to
train models to identify rare but critical failure modes 6062,

+ Lack of Diversity: Existing datasets are often collected from a small number of sites

with similar technologies and climates, limiting the generalizability of models trained
on them 7576,

Figure 2.6: Contrast between data types. (Left) A true radiometric thermal image where
pixel values correspond to temperature, enabling quantitative analysis. (Right) A typical 8-
bit JPEG from a public dataset, where colors are arbitrary and prevent robust, physics-based
analysis.

The confluence of these issues suggests a potential generalization problem, where high ac-
curacy figures reported in studies may be artifacts of testing on small, proprietary datasets '°.
Without a high-quality, radiometric, and standardized benchmark dataset, it is impossible to
meaningfully compare methodologies and transition research into industry-ready tools®°.
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2.5 Research Opportunities

This review has established the profound economic and environmental stakes of PV sys-
tem underperformance, with losses mounting into the billions of dollars and a widening
"O&M Gap" that necessitates automated solutions'2. The complex, interconnected nature
of defect cascades underscores the need for early and accurate diagnostics®8. While drone-
based thermography guided by the IEC 62446-3 standard is the definitive method for scal-
able data collection, its potential is unrealized due to an analysis bottleneck %3,

With this review in problem domain and defectology a part of the research gap has been
identified: is the critical lack of large-scale, public, and standardized datasets containing
essential radiometric thermal data®°. The current landscape of 8-bit, non-standardized
datasets risks a reproducibility crisis, producing models that are not robust or generalizable
to real-world conditions '°. This dissertation is positioned to address this gap by developing
and validating novel detection algorithms designed specifically to operate on radiometrically
accurate thermal data collected in strict accordance with international standards.
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Chapter 3

State of the Art in Automated PV
Plant Analysis

3.1 Introduction

This chapter provides a review of the technical state of the art in the automated analysis
of UAS imagery for photovoltaic (PV) plant inspection. Building upon the economic and
environmental importance and public data need established in Chapter 2, this section eval-
uates the algorithmic foundations and existing system-level solutions for panel detection and
anomaly classification.

A central theme of this review is the dichotomy between computationally intensive, propri-
etary, cloud-based commercial systems and the emerging need for transparent, privacy-
preserving, and locally executable open-source alternatives. Commercial platforms offer
polished services at the cost of data sovereignty, algorithmic transparency, and significant
processing delays’’. Conversely, open-source tools, while philosophically aligned with lo-
cal control, are often fragmented or exist as academic proofs-of-concept rather than robust,
deployable systems’®. This analysis will systematically identify the technical and opera-
tional gaps, thereby positioning the unique contribution of this thesis: to bridge this divide by
developing a practical, open-source, and locally-runnable inspection framework.

3.2 Computer Vision Approaches for Panel Detection and Lo-
calization

The primary challenge in automated inspection is the accurate identification and delin-
eation of individual PV panels from aerial imagery, a critical prerequisite for any subsequent
anomaly analysis. The field is dominated by two main families of techniques: traditional
image processing methods, which are computationally lean and well-suited for local deploy-
ment, and deep learning methods, which represent the performance-driven state of the art
but carry a significant computational burden.
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3.2.1 Traditional Image Processing Techniques

These methods are foundational in computer vision and are particularly relevant to this
thesis due to their low computational overhead and their potential for implementation on
standard local hardware without reliance on cloud infrastructure. Their principles are well-
understood, making them transparent and auditable.

» Template Matching: The principle of template matching is to locate instances of a
small template image within a larger source image by sliding the template across the
source and calculating a similarity metric at each position”®. The choice of metric is
crucial; Normalized Cross-Correlation (NCC) is particularly important for aerial PV in-
spection, as it provides a degree of invariance to the global changes in brightness and
contrast ubiquitous in outdoor imagery ”®. While basic template matching is sensitive
to scale and rotation, it can be quite powerful in cases where the pattern to match is
repeated and always very constant in shape and dimensions (like a PV module).

Template _
image

Source image Matching process

Figure 3.1: How template matching works, a template image is taken and in our case is
moved across the target image. The points where the match was higher are identified as
having a match.

* Hough Transform: The Hough Transform is a powerful feature extraction technique
used to find imperfect instances of shapes, such as lines, through a voting procedure
in a parameter space®. Its primary application in PV inspection is the detection of
the straight lines that form the rectangular boundaries of PV modules, typically after
an edge detection step using the Canny algorithm®. A critical application of this tech-
nique is the correction of geometric distortions inherent in aerial imagery. In the ortho-
mosaic reconstruction phase, by detecting the dominant sets of horizontal and vertical
lines, the Hough Transform allows for the computation of the necessary homography
to apply a corrective warp, simplifying subsequent segmentation and analysis®’.
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3.2.2 Deep Learning-Based Object Detection

Methods based on Convolutional Neural Networks (CNNs) represent the current state of
the art in object detection accuracy but require significant computational power, typically
necessitating GPUs and favoring cloud-based processing. This paradigm contrasts with the
local-first objectives of this thesis.

The "You Only Look Once" (YOLO) family of algorithms has revolutionized real-time ob-
ject detection, with successive versions continuously improving the speed-accuracy trade-
off8283_In PV inspection, these models have demonstrated exceptional performance, with
mean Average Precision (mAP) for panel detection often exceeding 95%82. For instance,
the ST-YOLO model reported an mAP@0.5 of 96.6% for defect detection®*. This high ac-
curacy, however, is computationally demanding; a model like YOLOv8s contains over 11
million parameters and requires 28.4 GFLOPs for inference, making real-time processing
on standard hardware challenging®*.

The choice of a detection algorithm, therefore, represents a fundamental engineering trade-
off. Deep learning models are architected for a "GPU-first" or "cloud-native" deployment,
while traditional methods like template matching are "local-first" and well-suited for appli-
cations where accessibility and data privacy are paramount. The selection of template
matching in this thesis is a deliberate decision that prioritizes these practical deployment
constraints over achieving the absolute peak accuracy reported in deep learning literature.

3.3 Machine Learning for Thermal Anomaly Classification

Once panels are localized, the subsequent task is to classify them based on their thermal
signatures to identify potential defects. This section reviews the two dominant paradigms for
this task: supervised learning, which requires pre-labeled training data, and unsupervised
learning, which identifies anomalies by detecting deviations from a learned model of normal
behavior.

3.3.1 Supervised Learning Techniques

Supervised methods learn a direct mapping from input data to a set of predefined anomaly
classes. Their efficacy is fundamentally tied to the quality and diversity of the labeled dataset
used for training. For the direct analysis of thermal imagery, Convolutional Neural Net-
works (CNNs) are the preeminent approach because they can automatically learn the com-
plex spatial patterns and thermal signatures that define defects®. Architectures ranging
from custom networks to established models like VGG16 and ResNet have demonstrated
consistently high performance, achieving fault classification accuracies of over 97% for var-
ious defect types8-87,

Beyond direct image analysis, other techniques excel at classifying pre-extracted thermal
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features. For instance, both Random Forest (RF) and Support Vector Machines (SVMs)
have been effectively used to classify specific faults, such as inverter issues or partial shad-
ing, based on statistical data derived from the thermal images®:8°. A common hybrid strat-
egy also involves using a pre-trained CNN solely as a powerful feature extractor, with its
output then fed into a less computationally intensive classifier like an SVM for the final deci-
sion®0.

3.3.2 Unsupervised Learning Techniques

Unsupervised methods are of practical importance where labeled data is scarce. They
operate by learning the statistical characteristics of "normal" PV panel behavior and flagging
significant deviations as anomalies. Several techniques are employed to build this model of
normalcy. For example, a One-Class SVM (1SVM) can be trained to define a boundary
that encloses the feature space of healthy operations, flagging any panel whose thermal
signature falls outside this boundary as anomalous®'.

Similarly, generative models like Variational Autoencoders (VAEs) are trained to accu-
rately reconstruct thermal images of healthy panels; a high reconstruction error on a new
panel therefore signals a potential defect®?. The Isolation Forest algorithm operates on
a related principle, identifying anomalies not by reconstruction but by their ease of isola-
tion. Since defects are "few and different," their corresponding data points are more easily
separated from the dense cluster of normal panel data in a decision tree structure ®2.

The scarcity of comprehensive, labeled public datasets for PV defects poses a significant
challenge for supervised learning. Unsupervised methods circumvent this bottleneck, of-
fering a highly practical path for deployment by requiring only data from normal operations,
which is abundant.

3.4 Review of Existing Systems and Solutions

This section transitions from individual algorithms to an analysis of integrated systems, eval-
uating the current landscape of academic, open-source, and commercial solutions.

3.4.1 Academic and Open-Source Implementations

The open-source domain provides invaluable building blocks but generally lacks the end-to-
end integration and robustness of commercial products, the only complete software pipeline
is PV Hawk:
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Figure 3.2: A screenshot of the GUI of the open-source PV Hawk viewer

PV-Hawk stands out as a comprehensive open-source system for automated PV inspection.
It is a command-line tool that takes drone video and GPS data, performs a 3D reconstruc-
tion with OpenSFM, segments modules, and extracts their geocoordinates for mapping, all
designed for local processing ’893. A companion desktop application allows for visualization
and analysis®*%. While demonstrating the feasibility of a local pipeline, its author notes its
status as a "proof-of-concept" with potential instability, highlighting a clear gap for a more
robust open-source alternative ’.

The main difference between the approach taken by PV Hawk and this Thesis Project is in
the starting data: PV Hawk directly uses the Images or video frame from the drone, this
approach needs a Structure-From-Motion reconstruction to geolocate the modules correctly
but it can be hindered by various factors. Many researches have highlighted that the use
of orthomosaics is much more accurate and much less error prone %97, so in the following
Chapter 4 precisely this method was used.

Beyond PV-Hawk, the open-source landscape is fragmented. Numerous repositories exist
but typically serve narrow purposes, such as providing datasets®® or specific algorithmic
implementations presented as feasibility studies®®. This fragmentation underscores the lack
of a unified, production-ready open-source system for PV plant operators.

3.4.2 Commercial Cloud-Based Platforms

The dominant commercial model is the polished, cloud-based Software-as-a-Service (SaaS)
platform, which abstracts away technical complexities but introduces trade-offs in cost, trans-
parency, turnaround time, and data privacy.
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Figure 3.3: A sample of the available commercial cloud-based SaaS solutions: Drone De-
ploy (Left), SiteMark (Center) and RaptorMaps (Right)

The most used leading platforms include DroneDeploy, a versatile platform serving multiple
industries 19°; Raptor Maps, a highly specialized platform focused exclusively on the solar

industry 19"; and Sitemark, another solar-focused platform offering unique rapid-analysis

solutions 192,

3.4.2.1 Criticalities of Commercial Solutions

A critical examination of these platforms reveals a consistent operational model with several
key characteristics:

* Processing Model: All major commercial solutions are fundamentally cloud-based;
users must upload their imagery to the company’s servers for processing '%°.

« Turnaround Time: While premium offerings promise results in hours %3194 standard
service tiers can be substantially slower, with some platforms specifying turnaround
times of 7 to 20 days'%®. This long wait stands in stark contrast to the near-instant
feedback possible with local processing.

+ Algorithmic Transparency: These platforms market their "proprietary Al" as "black
boxes," providing no details about the models used, the data they were trained on, or
their performance metrics '°!. An open-source solution offers complete auditability.

« Data Privacy and Sovereignty: This is a critical distinction. The privacy policies of
major platforms explicitly state that customer data may be used to "monitor, analyze
and improve the performance of the Services" %6197, This confirms that the client’s
operational data is a raw material used to enhance the vendor’s core Al asset. For
plant owners who consider their data proprietary, this is a significant concern%®. A
local system provides absolute data sovereignty.

This analysis reveals that the business model of commercial platforms is centered on their
proprietary Al, which is continuously improved using client data. The proposed system in
this thesis offers a fundamentally different value proposition: it is a tool, not a service, where
the user retains complete ownership and control of their data.
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3.5 Gap Analysis and SoTA Limitations

This final section synthesizes the findings from the preceding review to construct a com-
pelling argument for the novelty and necessity of the research presented in this thesis.

The review of the state of the art reveals a significant disparity in the landscape of automated
PV inspection tools. On one side, commercial solutions offer polished, end-to-end systems
but are built on a proprietary, cloud-based, "black-box" model, introducing critical issues
regarding data privacy, transparency, and cost'®. On the other side, academic and open-
source solutions, while philosophically aligned with local control, are fragmented and often
immature, lacking a unified, robust, and user-friendly system for day-to-day operations ’®.

The unmet need is for a solution that is simultaneously open-source, end-to-end, locally-
executable on standard hardware, compliant with IEC standards, that uses Orthomosaic
images, and privacy-preserving, ensuring sensitive data remains entirely within the owner’s
control.
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Chapter 4

Software Interface and Methods

This chapter provides a comprehensive exposition of the system architecture and the multi-
stage methodology developed for the automated detection of thermal anomalies in photo-
voltaic (PV) plants. The system is implemented as a cohesive software solution, the "Solar
PV Anomaly Detection Suite," featuring a Graphical User Interface (GUI) designed to guide
an operator through a structured workflow. The methodology emphasizes a modular, local-
first processing pipeline, user-in-the-loop control, and the synergistic integration of advanced
image processing with machine learning techniques.

4.1 Orthophoto-Centric Workflow Rationale

As discussed in the preceding State of the Art review, existing open-source frameworks such
as PV-Hawk often operate directly on raw aerial videos and their associated metadata. This
project deliberately diverges from that approach by adopting an orthophoto-centric work-
flow. The system is architected to ingest pre-processed orthomosaics, which are generated
beforehand using specialized photogrammetry software. While the commercial package
Agisoft Metashape was utilized for this research, the workflow is compatible with any tool
capable of producing high-quality GeoTIFF orthomosaics, including open-source solutions
like WebODM.

This strategic decision to decouple the analysis pipeline from the initial Structure from Motion
(SfM) and orthomosaic reconstruction phase offers several advantages. It allows operators
to use best-in-class, established tools for photogrammetry and focuses the scope of this
project entirely on the novel aspects of panel detection, analysis, and classification.
However, the importance of the reconstruction quality cannot be overstated. The fidelity of
the input orthomosaics is imperative for the success of the entire downstream pipeline. A
high-quality survey and reconstruction, conducted in strict adherence to the IEC 62446-3
standard, is essential for minimizing artifacts such as sun glare. Specular reflection from
panel surfaces can saturate both RGB and thermal sensors, corrupting the underlying data
and rendering accurate detection and quantitative thermal analysis impossible.
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Figure 4.1: The critical impact of reconstruction quality on data fidelity. A poor reconstruction
(left) exhibits significant sun glare and artifacts, while a high-quality reconstruction (right)

provides clean data suitable for analysis.

4.2 System Architecture and Data Flow

The "Solar PV Anomaly Detection Suite" is designed as a modular desktop application that
guides the user through a sequential analysis pipeline. The architecture, as depicted in Fig-
ure 4.2, is structured around a series of distinct processing modules, each corresponding to
a major stage of the workflow. This modularity ensures a logical progression of tasks, from
data ingestion to the final generation of reports. The primary data objects—RGB and ther-
mal image layers, panel detections, and thermal statistics—flow between these modules,
with each stage enriching the data for the next. The system is designed for local execution,
ensuring that all data and processing remain on the operator’s machine, thus guaranteeing
data sovereignty and privacy.
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Figure 4.2: A high-level diagram illustrating the system’s architecture and the logical flow of
data between its core processing modules.

4.3 The Graphical User Interface (GUI)

The entire system is encapsulated within a user-friendly GUI, which serves as the primary
command and control center for all operations. The interface is organized into three main
areas: a persistent "Workflow" panel on the left, a main interactive view in the center, and
a context-sensitive control panel that appears on the right. The Workflow panel provides
access to the distinct modules of the application: Inputs, Alignment, Detection, Segmen-
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tation, Models, Classification, and Outputs. This structure provides a clear and intuitive
step-by-step guide for the user, from getting started to exporting the final results.

@ Solar PV Anomaly Detection Suite — O

=  Solar PV Anomaly Detection CIFLE ~ &3 SETTINGS ~

WORKFLOW
Welcome Section

Inputs

Alignment

Getting Started

Detection Select a workflow section from the left panel to begin:

1. Inputs - Upload your GeaTIFF files

Segmentation 2. Alignment - Align RGB and thermal images

3. Segmentation - Define analysis grid and detect panels
Models 4. Models - Train and test machine learning models

5. Classification - Run thermal defect analysis

6. Outputs - View and export results
Classification
Use the Map tool to visualize your data and the Info section for more details.

Status: ML Models section added with comprehensive training and testing capabilities!

Outputs

Figure 4.3: The main welcome screen of the Solar PV Anomaly Detection Suite, outlining
the six primary workflow sections accessible via the left-hand navigation panel.

4.4 Module 1: Input and Alighment

4.4.1 Data Ingestion

The workflow begins in the "Inputs" section, where the user uploads the two foundational
GeoTIFF files: the three-channel RGB orthophoto and the single-channel radiometric ther-
mal orthophoto. The system validates these inputs to ensure they are in the correct format
before proceeding.

4.4.2 Manual Image Alignment

Upon successful data ingestion, the operator moves to the "Alignment" module. Here, the
GUI presents the two orthophotos side-by-side on an interactive map interface. To rectify
minor misalignments between the layers, the system implements a user-driven alignment
procedure based on a 2D projective transformation.
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Figure 4.4: A projective transformation: placing four pair of points is able to unequivocally
define a transformation for the entire image.

The user is prompted to place at least four homologous control points on each image. The
more precise the placement of these points, the better the resulting alignment. Once the
points are set, the system computes the transformation matrix that warps the thermal layer
coordinates system to precisely match the one of the RGB layer. This accurate, user-verified
alignment is fundamental for all subsequent stages.
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Figure 4.5: The user interface for the Alignment module. The operator places corresponding
control points (blue markers) on the RGB (left) and thermal (right) orthophotos to enable a

precise affine transformation.

4.5 Module 2: The Panel Detection Pipeline

The core of the system’s analytical capability resides in the "Detection” module. A key
architectural decision was to execute the detection process independently on the RGB and
thermal layers to ensure that the bounding box for each detected panel is perfectly tailored
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to its respective image data.

4.5.1 Core Detection via Normalized Cross-Correlation

The primary detection algorithm is a robust implementation of template matching based
on Normalized Cross-Correlation (NCC). The process shown in 4.7 is initiated by the user
defining a panel group and its configuration (e.g., rows and columns) on the map. This
generates a grid from which multiple panel templates are automatically extracted. Using

multiple templates builds a more resilient matching model that can account for variations in
panel appearance.

Figure 4.6: A special implementation of the NMS algorithm was used since the images are
very large, for a small plant more than 2 million panels where detected and doing an loU
check for all of them is exponentially slower.

The operator can then fine-tune the detection using sliders for ‘Template Matching Thresh-
old* and ‘NMS IoU Threshold* before running the main matching process. As seen in 4.6,
During the NMS (Non-Maximum Suppression) phase, each detection is spatially binned
together with others nearby, tis allows for an exponentially faster loU check between the
detections instead of doing the check on all detections in a single bin.

Furthermore a novel feature was introduced for the thermal detection phase to enhance
robustness against hotspots, allowing an operator to set a temperature cap for the NCC
calculation, preventing high-temperature anomalies from causing a template mismatch.
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Figure 4.7: The Ul for the core detection step. The operator defines a grid to create
templates and adjusts parameters for template matching and Non-Maximum Suppression
(NMS). The initial raw detections are shown as small green boxes.

Figure 4.8: Example of thermal (left) and RGB (right) panel templates automatically ex-
tracted by the system for use in the NCC algorithm.

4.5.2 Advanced Detection Refinement

To maximize detection accuracy, the system provides a suite of advanced algorithms to
refine the initial results. These tools leverage the inherent spatial structure of PV plants. As
shown in Figure 4.9, the refinement steps include:

 Spatial Clustering and Grid Fitting: This algorithm first employs the DBSCAN algo-
rithm to group detected panels into spatially coherent blocks. Subsequently, a custom
algorithm fits a regular grid to each cluster, allowing the system to programmatically
identify and remove false positives and infer the locations of missed panels. The user
can control parameters such as ‘Clustering Distance’ and ‘Delta Jitter".

» Border Outlier Removal: A subsequent step allows for the removal of isolated outlier
panels based on a confidence threshold.
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+ Cellular Automaton for Gap Filling: A novel algorithm inspired by Conway’s Game
of Life is implemented to intelligently fill small, isolated gaps within a regular panel
array based on the number of neighboring panels.

@ FRemoved by Cluster (626)
@ Removed by Border (25)
@ Added by Filling (23)

@ Vvalid Panels (6565)
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Figure 4.9: The various algorithms removing unwanted detections (Top). The Ul for the
advanced detection refinement pipeline, showing the controls for DBSCAN/Grid Fitting and
Border Outlier Removal. The map displays the refined panel detections. (Bottom)

4.6 Module 3: Segmentation and Feature Extraction

The "Segmentation" module is where the detections from the two layers are unified and
analyzed. With complete and verified detection sets, the first step is to establish a one-to-
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one correspondence between them by calculating the Intersection over Union (loU) of the
pairs of bounding boxes (Thermal and RGB). A pair is successfully established if their loU
exceeds a predefined threshold.

For each successfully matched pair, the system extracts the cropped RGB and thermal
images and computes a vector of key thermal statistics (mean, median, min/max temper-
ature, standard deviation, and variance). All associated data is then stored in a structured
database.

This module also functions as an interactive decision-support and labeling tool. The GUI
presents the plant on the map, with each panel color-coded based on a selected thermal
indicator. A plant-wide histogram with interactive sliders allows the operator to dynamically
define thresholds for "nominal” and "anomalous" ranges, providing immediate visual feed-
back. By clicking on a panel, the operator can view its detailed information, including its
pairing quality, thermal data, and the cropped thermal and RGB images. The user can then
save labels based on these visual analytics, creating a dataset for domain-expert labeling
and subsequent model training.

rmal
indicator| wex v | [ I [T TUETENY ) stac sccmenranon il §= ceser

Distribution (6542 panels) =41.8°C 043'C
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S8 Panel pair: dbf30844...

Tempera ture range: 27.72'C1o 7590°C - Average: 4257°C

= Leaflet | © OpenStreetMap contributors, Stadia Maps, OpenMapTiles, OSM, RGB, IR ¢ »

Figure 4.10: The interactive analysis dashboard within the Segmentation module. The inter-
face displays thematically colored panels, a plant-wide thermal distribution histogram with
user-controlled thresholds, and a detailed information card for the selected panel.
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Figure 4.11: A detailed view of a single panel pair, showing the radiometric thermal image
with its temperature scale and the corresponding high-resolution RGB image.In this case
the Hot-Spot is caused by a physical obstruction like soiling or bird deposits.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



Scuola universitaria professionale della Svizzera italiana 33

4.7 Module 4: Machine Learning Model Training

The "Models" section of the suite is more intended for the users that want to use the tool as a
dataset generation tool for research purposes, it provides a comprehensive environment for
training, testing, and evaluating various machine learning models. The user begins by load-
ing a labeled CSV file (generated in the previous step or prepared externally). The interface
allows for the training of multiple model types—including binary, multi-class, and regression
models—on the thermal feature data. For each model, such as the Binary Random Forest
shown in Figure 4.12, the Ul displays training progress, training time, and a full suite of per-
formance metrics for both training and testing sets, including accuracy, precision, recall, and
F1 score. A confusion matrix is also generated to provide a clear visual assessment of the
model’s classification performance.

Models Section

Load thermal panel labels and train various ML models to predict panel anomalies.

[LIl Data Loading

CSV File Path
thermal_panel_labels.csv

Data Preprocessing Options:  Apply Robust Scaling to features @ roappaTA

Binary Random Forest Train Results Test Results Confusion Matrix

Acouracy: 1.0000 Accuracy: 09992

ficat

Precision: 1.0000 Precision: 0.9600

¢ F1Score: 1.0000 F1Score:0.9796

not_defective S PLZY 1000
Recall: 1.0000 Recall: 1.0000

Actual

not_defective  defective

Predicted

Samples: 1309 Correct: 1308 Ace: 0.999

Figure 4.12: The user interface for the Machine Learning Models module. This view shows
the results of training and testing a Binary Random Forest classifier, including performance
metrics and a confusion matrix.

4.8 Module 5: Classification and Analysis

Once a model has been trained and saved, the "Classification” module is used to apply
it to the entire dataset of detected panels. The user can load a pre-trained model from
the previous step or a custom one and run the classification process. The results are dis-
played interactively on the map, with each panel color-coded according to its predicted class
(e.g., green for 'not defective’, red for 'hot spot’). Clicking on a panel reveals its full ther-
mal data alongside the predictions from multiple models (e.g., ‘multiclass_nn‘, ‘binary_rf,
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‘regression_nn‘). This provides a powerful tool for rapidly assessing the health of the entire
plant based on the learned knowledge encapsulated in the trained models (even if they were
trained from a different plant).

Model Folder: | trained_models 4 L0AD MODELS VIR ?lz%:::rim Neural

Classification summary will appear after running a model

Panel Pair: dbf30844...

& Model Results:

multiclass_nn:

multiclass_rf:

multiclass_ir

% ‘\ binary_rf:

regression_on:

< Pair 1D: dbf30844...

A Thermal Image m m
=]

Palette

§ Thermal Data: - - —e

Temperature range: 27.72°C to 75.90°C « Average: 42.57°C

e ai o RGB Image
= Leaflet | © OpenStreethiap contributors, Stadia Maps, OpenMapTiles, OSM, RGB, IR 4

Figure 4.13: The Classification module interface. The map visualizes the model’s predic-
tions, with a detailed pop-up showing the predicted class ("Hot Spot’) for the selected panel,
alongside its thermal data and detailed classification results on the right.

4.9 Module 6: Outputs and Reporting

The final "Outputs” module provides a clean, tabular summary of all detected anomalies
from the classification step. The report lists each anomalous panel’s ID, its predicted anomaly
type, the model’s confidence in that prediction, and its precise geographic location. This ac-
tionable report can be exported and used by maintenance teams to locate and address
specific defects in the field, thus closing the loop from automated data analysis to physical
remediation.
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View, analyze, and export the results of Al detections.

This includes reports, annotated imagery, and statistical summaries.

Detected Anomalies

ID Anomaly Type Confidence Location
P001-A01 Hotspot 95% 43.568201746846, 10.707515646128
P003-A01 Module Failure 88% 43.568201746846, 10.70751564635
PO07-A02 Soiling 75% 43.568201746846, 10.70754587925
PO09-A03 Diode Failure 65% 43.568201746846, 10.707576112172
P011-AD4 Hotspot 97% 43.568201746846, 10.707606345096
P013-A05 Module Failure 86% 43.568201746846, 10.70763657802
P015-A06 Soiling 75% 43.568201746846, 10.707666810944
P017-A07 Diode Failure 64% 43.568201746846, 10.707697043868
P019-A08 Hotspot 92% 43.568201746846, 10.707727276792
P021-A09 Module Failure 89% 43.568201746846, 10.707757509716

Figure 4.14: The Outputs section, presenting a final, exportable report of all detected
anomalies with their type, confidence level, and location.
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Chapter 5

Experiment and Results

This chapter presents a comprehensive evaluation of the developed Solar PV Anomaly De-
tection Suite. The primary objective of the experiments is to validate the efficacy and ef-
ficiency of the entire end-to-end pipeline, from data ingestion to final classification. The
evaluation is structured to assess each major component of the system, focusing first on the
experimental conditions, followed by the performance of the panel detection and anomaly
classification modules. The results underscore the system’s capacity not only as a functional
diagnostic tool but also as a powerful framework for creating high-quality, labeled datasets
for future research.

5.1 Experimental Setup

5.1.1 Dataset and Hardware

The experiments were conducted on a diverse dataset aggregated from 13 different photo-
voltaic plants located in ltaly. These sites, summarized in Table 5.1, comprise 10 large-scale
ground-mounted fields and 3 industrial rooftop installations, ensuring the system was tested
against a variety of layouts, panel types, and environmental conditions.

For each site, paired RGB and thermal aerial surveys were conducted. The raw imagery,
totaling approximately 73,000 images (36,500 per sensor type), was processed separately
using Agisoft Metashape to generate two coregistered orthomosaics per plant. The resulting
orthophotos exhibit a high spatial resolution, with an average Ground Sampling Distance
(GSD) of approximately 0.5 cm/pixel for the RGB layer and 1.5 cm/pixel for the thermal
layer.

All processing tasks, from orthomosaic image alignment to model inference, were executed
on a mid-range laptop equipped with an 8-core AMD CPU (2020) and 16 GB of RAM. No
dedicated GPU was required for the core pipeline, underscoring the system’s accessibility
and computational efficiency.
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Table 5.1: Summary of the aggregated dataset used for system evaluation.

Parameter Value

Number of PV Plants 13

- Ground-Mounted 10

- Industrial Rooftop 3

Total Raw Images ~73,000

Output Orthomosaics 26 (13 RGB, 13 Thermal)
Average RGB GSD ~0.5 cm/pixel

Average Thermal GSD ~1.5 cm/pixel

Processing Hardware

5.1.2 System Performance and Scalability

Mid-range Laptop (No dGPU)

The entire software pipeline was tested on all 13 orthomosaic pairs. The system’s architec-

ture, while currently executed as a single-threaded desktop application, was designed with

modularity to facilitate future optimization for vertical or horizontal scaling. Table 5.2 details

a representative performance breakdown for the processing of a large-scale plant compris-

ing 6,857 panels. The processing times demonstrate the system’s efficiency, with the entire

workflow from orthophoto alignment to classification completing in under four minutes. The

most time-consuming step remains the initial template matching, whereas subsequent re-

finement and analysis stages are comparatively rapid.

Table 5.2: Representative performance breakdown for a 6,857-panel PV plant.

Processing Module

Execution Time (s)

Image Alignment
Panel Detection

1

- Template Matching 142
- DBSCAN Clustering 56
- Refinement 1
Panel Segmentation 43
Classification (Inference) 2-10
Total Approximate Time ~250

5.2 Evaluation Metrics

To quantitatively assess the system’s performance, a set of standard evaluation metrics was

employed for the distinct tasks of detection and classification.
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For panel detection, the primary metric is the True Positive Rate (TPR), also known as
Recall or Sensitivity. It is defined as:

TP

TPR= ———F—
r TP+ FN

where T'P (True Positives) is the number of correctly identified panels and F'N (False Neg-
atives) is the number of missed panels.
For anomaly classification, models were evaluated using two primary metrics:

» Accuracy: The ratio of correctly classified instances to the total number of instances.

* F1-Score (Weighted Average): The weighted average of the F1-scores for each
class, which is the harmonic mean of precision and recall. This metric is particularly
useful for imbalanced datasets.

For the regression models, which were trained to predict a continuous value (expert-
assigned confidence), two additional metrics were used:

« R-squared (R?): The coefficient of determination, representing the proportion of the
variance in the dependent variable that is predictable from the independent variables.

+ Mean Absolute Error (MAE): The average of the absolute differences between the
predicted values and the actual values.

For direct comparison with classifiers, the continuous output of the regression models was
subsequently label-encoded into discrete classes to calculate accuracy and F1-scores.

5.3 Results of Panel Detection

The panel detection module, combining template matching with the advanced refinement
algorithms, demonstrated exceptionally high performance across all tested sites. Table 5.3
highlights the results onall the plants and the average performance across the entire dataset.
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Table 5.3: Panel detection performance across all 13 PV plants, highlighting variation be-
tween installation types.

Plant Type Total Panels Detected (TP) Missed (FN) TPR
Ground-Mounted (Site A) 6,857 6,848 9 99.87%
Ground-Mounted (Site B) 11,255 11,236 19 99.83%
Ground-Mounted (Site C) 3,657 3,657 0 100.00%
Ground-Mounted (Site D) 8,421 8,415 6  99.93%
Ground-Mounted (Site G) 12,877 12,871 6  99.95%
Ground-Mounted (Site 1) 11,298 11,284 14 99.88%
Ground-Mounted (Site J) 8,935 8,928 7 99.92%
Ground-Mounted (Site K) 10,880 10,874 6  99.94%
Ground-Mounted (Site L) 19,650 19,638 12 99.94%
Ground-Mounted (Site M) 7,542 7,539 3  99.96%
Roof-Mounted (Site E) 4,776 4,516 260 94.56%
Roof-Mounted (Site F) 1,244 1,209 35 97.19%
Roof-Mounted (Site H) 16,521 16,179 342  97.93%
Overall (All 13 Sites) 123,913 123,194 719  99.42%

The results strongly suggest that for structured environments like PV plants, the imple-
mented classical computer vision approach is highly effective. It achieves near-perfect de-
tection rates without the significant computational overhead associated with deep learning
models such as YOLO or Mask R-CNN. These alternative models would require substantial
GPU memory and processing power for inference on orthomosaics that can be as large as
40,000 x 26, 000 pixels.

The slightly lower average TPR of 99.42% is primarily attributed to the challenges posed
by rooftop installations, where metallic roofing elements, HVAC units, and complex shadow-
ing occasionally led to false negative or false positive detections. Nonetheless, the overall
performance robustly validates the chosen detection strategy.

5.4 Results of Anomaly Classification

5.4.1 Methodology and Ground Truth Creation

A key objective of this work was to validate a pipeline that could facilitate the rapid creation
of labeled datasets. The anomaly classification experiment was designed to reflect this.
Instead of relying on a purely Computer Vision (CV) approach, which would necessitate
extensive manual labeling of images, this Thesis focused on training simple, fast machine
learning models using statistical thermal features. The features used for training were: 15,44,
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Tmeans Tmedians Tstds Tvar, @nd Tinin.

These variables were calculated during thepanel pairing phase for each panel found with
the template matching.

The ground truth dataset was created using a semi-automated, expert-in-the-loop workflow
enabled by the software’s Ul:

1. Candidate Pre-selection: Using the interactive histogram tool, loose thermal thresh-
olds were applied to an unlabeled dataset of over 10,000 panels. This step filtered the
dataset down to approximately 800 panels exhibiting potentially anomalous thermal
signatures.

2. Expert Labeling: This reduced set of "suspicious" panels was exported and provided
to a certified expert in PV thermography, who assigned a ground truth label to each
one. The multiclass labels included: Normal, Hot-spot, Module-Defect, Diode, and
PID.

3. Dataset Balancing: The expert-labeled dataset was then re-balanced with a random
sample of panels previously classified as "normal" to create a final, representative
training dataset.

This methodology drastically reduces the manual labeling burden and demonstrates a prac-
tical path to creating large-scale, high-quality ground truth datasets. The final dataset was
appropriately scaled and normalized with a robust scaler before being used for model train-
ing and testing.

5.4.2 Model Performance

The prepared dataset was used to train and test a suite of models directly within the appli-
cation’s Ul. The models were chosen for their simplicity and inference speed, aligning with
the goal of demonstrating pipeline viability. The performance of these models on the training
and test sets is summarized in Table 5.4 and Table 5.5, respectively.

Table 5.4: Model performance on the training set.

Model Accuracy (Weighted) F1-Score (Weighted) R2 MAE
RF Binary Classifier 0.996 0.996 N/A  N/A
RF Multiclass 0.998 0.998 N/A  N/A
NN Multiclass 0.995 0.995 N/A  N/A
LR Multiclass 0.979 0.979 N/A  N/A
NN Regression Multiclass 0.989 0.912 0.96 0.04
RF Regression Multiclass 0.994 0.956 0.98 0.02
XGBoost Regression Multiclass 0.997 0.963 0.98 0.01
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Table 5.5: Model performance on the unseen test set.

Model Accuracy (Weighted) F1-Score (Weighted) R2 MAE
RF Binary Classifier 0.921 0.720 N/A  N/A
RF Multiclass 0.925 0.794 N/A N/A
NN Multiclass 0.938 0.828 N/A  N/A
LR Multiclass 0.865 0.712 N/A N/A
NN Regression Multiclass 0.889 0.817 0.79 0.28
RF Regression Multiclass 0.917 0.856 0.85 0.19
XGBoost Regression Multiclass 0.918 0.872 0.88 0.13

Table 5.6: Representative confusion matrix for the XGBoost multiclass classifier on a bal-
anced test set of 3,930 panels.

Predicted Class

True Class Normal Hot-Spot PID/Multi-HS Diode Offline-Module | Total
Normal 1953 38 0 0 0 1991
Hot-Spot 95 1110 42 11 0 1258
PID/Multi-HS 8 75 319 5 0 407
Diode 0 28 12 135 4 179
Offline-Module 0 1 3 0 91 95

Total ‘ 2056 1252 376 151 95 3930

5.5 Synthesis of Experimental Findings

The experimental results presented in this chapter successfully validate the core hypothe-
ses of this thesis. The panel detection pipeline, which combines classical computer vision
techniques with novel refinement algorithms, achieved an outstanding average True Posi-
tive Rate of 99.42% across a diverse dataset of 13 PV plants. This performance confirms
that for highly structured environments like PV installations, a computationally efficient, non-
deep-learning approach can yield results comparable to the state-of-the-art while running
on standard local hardware.

Furthermore, the anomaly classification experiments demonstrated the viability of using sta-
tistical thermal features for rapid and accurate defect identification. The good performance
of models like the XGBoost Regressor (F1-Score of 0.872 on the test set) underscores that
even the simple feature based approach is quite powerful. Critically, the entire experimen-
tal process showcased the system’s dual capability: not only as a robust analysis tool but
also as a powerful, semi-automated framework for the rapid creation of high-quality, expert-
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labeled datasets from radiometric data. The implications of these findings, the innovations
they represent, and the limitations of the current work will be critically examined in the fol-
lowing chapter.
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Chapter 6

Discussion

This chapter provides a critical interpretation of the experimental results, contextualizing
them within the research objectives and the state-of-the-art. The analysis focuses on the
meaning behind the performance metrics, the core innovations of the developed system, its
inherent limitations, and its specific positioning against existing solutions.

6.1 Interpretation of System Performance

The system’s panel detection performance, with a 99.42% average True Positive Rate,
strongly validates the decision to use a computationally efficient, classical computer vision
pipeline. For a geometrically regular problem like locating PV modules, the implemented
hybrid approach of template matching and spatial refinement proves to be a highly effective
alternative to resource-intensive deep learning models. This result demonstrates that tai-
lored, "local-first" algorithms can achieve state-of-the-art accuracy on standard hardware, a
key objective of this thesis.

The anomaly classification results further support this philosophy. The success of models
using simple statistical thermal features (e.g., XGBoost Regressor with a 0.872 F1-score
on the test set) confirms that a full image-based CNN is not always necessary for accurate
defect identification. The performance drop from the training to the test set is an expected
outcome in machine learning, highlighting not a system failure, but the crucial need for
diverse training data to improve model generalization. The system’s strength, therefore, lies
in its demonstrated ability to serve as a platform for creating and iteratively improving these
models as more data becomes available.

6.2 Innovations and Contribution

The primary contribution of this research is the development of a solution that occupies a
unigue and under-served gap in the PV inspection landscape. Its key innovations are:

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



46 Discussion

« A Privacy-Preserving, Local-First Architecture: In direct contrast to the dominant
cloud-based commercial model, this work delivers a fully local application. This design
choice grants the operator absolute data sovereignty, resolving the critical privacy and
data ownership concerns associated with uploading sensitive operational data to third-
party servers.

+ A Robust Orthomosaic-Centric Workflow: By standardizing on high-quality ortho-
mosaics as input, the system decouples analysis from the complex photogrammetry
process. This modularity allows operators to leverage best-in-class tools for recon-
struction and ensures a more reliable and accurate data foundation than systems that
process raw video feeds directly.

+ A Dual-Purpose Analysis and Dataset Creation Framework: The system func-
tions not only as a diagnostic tool but also as a powerful framework for addressing the
well-documented lack of high-quality, radiometric public datasets. Its semi-automated,
expert-in-the-loop labeling capabilities provide a practical pathway for the rapid gen-
eration of large, verified datasets, a significant contribution to the broader research
community.

6.3 Limitations and Future Directions

A critical evaluation of this work must acknowledge its limitations, which naturally point to-
ward avenues for future research. The system’s performance is fundamentally dependent
on the quality of the input orthomosaics; artifacts from poor surveys or reconstructions can
degrade accuracy. While the current single-threaded implementation is highly performant
for most plants, its scalability for mega-scale installations could be enhanced through paral-
lelization. Finally, the generalizability of any machine learning model is bound by its training
data; future work should focus on using the tool to aggregate data from a wider variety of
sites and technologies to build more universally robust models, and even better the imple-
mentation of Computer Vision models that use the segmented panels for defect classifi-
cation, offering a much more robust approach that will probably be able to outperform the
simple models trained on tabular data.

6.4 Comparison with the State of the Art

When positioned against existing solutions, the system developed in this thesis fills a clear
gap. Compared to commercial platforms like Raptor Maps, it offers a fundamentally different
value proposition: it is a tool, not a service, prioritizing data control, transparency, and
immediate on-site results over a polished but opaque cloud service. In contrast to open-
source proofs-of-concept like PV-Hawk, this thesis delivers a complete, user-friendly and
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robust end-to-end system with a GUI, representing a significant step forward in usability and
practical deployment. It successfully combines the functionality of a commercial product
with the transparent, accessible, and privacy-centric philosophy of open-source software,
without compromising on data acquisition standards and radiometric processing.
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Chapter 7

Conclusions

The rapid global expansion of photovoltaic installations has created an urgent need for scal-
able, efficient, and reliable methods for plant inspection and maintenance. Performance
losses due to undetected defects lead to billions of dollars in economic damages annu-
ally and challenge the long-term environmental sustainability of solar assets. The widening
"O&M Gap," where capacity growth outpaces the growth of skilled maintenance personnel,
underscores the unscalability of manual inspection and necessitates the development of
automated solutions.

This challenge was addressed through the design, implementation, and validation of a
PV Anomaly Detection Suite, a novel, end-to-end software solution for automated thermal
anomaly detection. The system was architected with a "local-first" philosophy, ensuring
all processing and data remain on the operator’'s machine, thereby guaranteeing absolute
data sovereignty and privacy. By adopting an orthomosaic-centric workflow and integrating
a hybrid of classical computer vision and modern machine learning techniques, the suite
provides a robust, computationally efficient pipeline accessible to users without specialized
GPU hardware.

The experimental validation, conducted on a diverse dataset of 13 PV plants, confirmed
the system’s efficacy. The panel detection module achieved an outstanding average True
Positive Rate, demonstrating that tailored classical algorithms can rival the accuracy of deep
learning models for structured environments. Furthermore, classification models trained
on simple, extracted thermal features achieved good performance validating a rapid and
efficient approach to anomaly identification.

Furthermore, this Thesis moves beyond a purely analytical function, providing an effective
framework for the rapid, semi-automated creation of high-quality, radiometric, and expert-
labeled datasets, a valuable resource that can fuel future research and development in the
field.

Future work should focus on several key enhancements. System scalability for mega-scale
plants can be improved through parallel processing, and workflow efficiency can be in-
creased by automating some of the manual steps. Critically, the system’s dataset creation
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capabilities should be leveraged to train advanced computer vision models, such as YOLO
like models, U-Nets or other Convolutional Neural Networks on the segmented panel im-
ages. This would enable classification based on learned spatial patterns, like the distinct
signatures of PID or diode failures, moving beyond statistical features to achieve more nu-
anced and accurate defect identification. Concurrently, continued aggregation of data from
diverse sites will be essential for building more universally robust models.

In conclusion, this thesis has successfully developed and validated a comprehensive solu-
tion that lowers the barriers to adopting advanced automated diagnostics. By providing an
open, private, and effective tool, this work contributes to ensuring the long-term reliability,
profitability, and sustainability of the global solar energy infrastructure.
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