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Abstract

Thermography for photovoltaic (PV) plants is hindered by a critical trade-off: opera-
tors must choose between opaque, proprietary cloud platforms that compromise data
sovereignty and fragmented, impractical open-source tools. This thesis resolves this
dilemma by introducing the PV Anomaly Detection Suite, a novel, end-to-end software
solution architected for local, privacy-preserving operation.

The system leverages a robust orthomosaic-centric workflow, combining computation-
ally efficient computer vision for panel detection with machine learning for radiometric
anomaly classification on standard hardware. Validated across 13 diverse PV plants,
the suite achieved a panel detection rate exceeding 99.42% and demonstrated robust
defect classification. The primary contribution is a practical, user-friendly tool that pro-
vides operators with immediate, on-site analytics, bridging the gap between commercial
services and academic projects while empowering future research through a powerful
dataset creation framework.

Abstract

La termografia per gli impianti fotovoltaici (FV) è ostacolata da un compromesso critico:
gli operatori devono scegliere tra piattaforme cloud proprietarie e opache, che com-
promettono la sovranità dei dati, e strumenti open-source frammentati e poco pratici.
Questa tesi risolve tale dilemma introducendo la PV Anomaly Detection Suite: una
nuova soluzione software end-to-end, progettata per un’operatività locale e a tutela
della privacy.

Il sistema si basa su un robusto flusso di lavoro incentrato su ortomosaici, combinando
algoritmi di computer vision computazionalmente efficienti per il rilevamento dei pan-
nelli con il machine learning per la classificazione di anomalie radiometriche su hard-
ware standard. Validata su 13 diversi impianti FV, la suite ha raggiunto un tasso di
rilevamento dei pannelli superiore al 99.42% e ha dimostrato una classificazione dei
difetti robusta. Il contributo principale è uno strumento pratico e di facile utilizzo che
fornisce agli operatori analisi immediate e in loco, colmando il divario tra i servizi com-
merciali e i progetti accademici e, al contempo, potenziando la ricerca futura tramite un
potente framework per la creazione di dataset.
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Chapter 1

Introduction

The proliferation of utility-scale photovoltaic (PV) plants, has introduced a critical challenge:

ensuring decades-long operational reliability. The economic viability and environmental sus-

tainability of these assets are directly contingent on maximizing their energy yield and op-

erational lifespan, which necessitates advanced methods for Operations and Maintenance

(O&M).

Unmanned Aerial Vehicle (UAV) thermography has become the industry standard for rapid,

large-scale PV inspection, providing the raw data needed to identify performance-inhibiting

thermal anomalies. This technological advance, however, has shifted the bottleneck from

data acquisition to data analysis. The sheer volume of imagery generated makes manual

inspection untenable, creating an urgent need for automated, algorithm-driven diagnostic

systems.

The current ecosystem of automated solutions presents operators with no choice. Commer-

cial, cloud-based platforms offer polished user experiences but operate as "black boxes,"

requiring the surrender of sensitive operational data to third-party servers and introducing

concerns of privacy and vendor lock-in. Conversely, the existing open-source alternatives

are often fragmented, lack robust end-to-end functionality, and remain at the level of aca-

demic proof-of-concept. This creates a significant research and utility gap for a tool that is

at once powerful, private, transparent, and practical for field deployment.

This thesis bridges this gap by presenting the design, implementation, and validation of a

novel, end-to-end PV Anomaly Detection Suite. It delivers a complete, locally-executable

software solution that provides operators with powerful analytical capabilities without com-

promising data sovereignty. By integrating efficient computer vision and machine learning

within a user-friendly, orthomosaic-centric workflow, this work provides a practical alterna-

tive to existing solutions. This dissertation will detail the problem domain, review the state

of the art, present the system’s methodology and experimental results, and conclude by

discussing its possible future contributions to the field of automated PV diagnostics.
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Chapter 2

The Problem Domain: PV Inspection,
Defectology and Thermography

2.1 Importance of Reliability in Photovoltaic Systems

The installed PV capacity has grown exponentially in the last few years, surpassing 2 ter-

awatts (TWp)1. This expansion highlights the critical importance of ensuring the long-term

reliability, performance, and safety of these assets2. The economic viability and environ-

mental promise of solar energy are intrinsically linked to the operational integrity of PV sys-

tems. Financial models depend on predictable and uninterrupted energy generation, while

the technology’s green credentials hinge on a long operational life to compensate the initial

environmental investment3;4. Defects and premature failures pose a systemic threat to this

paradigm5.

This chapter presents a comprehensive review of these threats, focusing on the thermal

anomalies that serve as their primary indicators6. It aims to establish the theoretical foun-

dation for advanced diagnostic methodologies by first quantifying the economic and envi-

ronmental impacts of performance loss7. Subsequently, a detailed taxonomy of PV defects

is provided, outlining their physical origins and characteristic thermal signatures8. The prin-

ciples of thermographic inspection, as governed by international standards, highlighting the

crucial limitations of existing public datasets that hinder the development of robust artificial

intelligence models9;10.

2.2 Impact of Performance Loss in PV Plants

The significant consequences of PV system under-performance, which affect financial sta-

bility, environmental lifecycles, and operational integrity, highlights the need for robust defect

detection5.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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2.2.1 Economic Implications of Underperformance and Degradation

The PV global industry lost from underperforming assets an estimated $4.6 billion in 2023

and this number is projected to approach $15 billion in 202511. The average annual rev-

enue loss per megawatt (MW) has surged from $977/MW in 2020 to $5,720/MW in 2024,

indicating a worsening financial impact per unit of capacity12. This underperformance di-

rectly erodes project profitability; a 100 MW site with a 5.77% underperformance rate could

see a 249 basis point reduction in its internal rate of return (IRR)12.

The Levelized Cost of Energy (LCOE) is highly sensitive to degradation rates13. While

financial models often assume a 0.5% annual degradation, field data suggests a median

system-level rate of 1.3%/year3. An increase in the degradation rate from 0.5% to 2.5%

can elevate the LCOE by over 30% in favorable economic conditions and by 103.2% in less

favorable scenarios13;14.

Losses are distributed throughout the system, with inverters (2.13%), string-level issues

(1.26%), and combiner boxes (1.04%) being the largest contributors, challenging the per-

ception that modules are the sole concern12. In the U.S., inverters are responsible for 39%

of total power loss12. This problem is exacerbated by a widening "O&M Gap": for example

from 2018 to 2023, U.S. solar capacity grew by 182%, while O&M employment grew by only

91%12. This structural imbalance highlights the unscalability of manual maintenance and

creates a powerful economic need for automated diagnostic technologies15.

2.2.2 Environmental and Life Cycle Considerations

The environmental benefits of PV technology depend on a long and productive operational

life4. The manufacturing process is energy- and resource-intensive, requiring materials like

high-purity silicon and involving hazardous chemicals such as lead4;16. Consequently, a

solar panel has an energy payback time (EPBT) of 2-3 years, the period it must operate to

offset the energy consumed during its production4. Defects that cause premature failure

may prevent a panel from repaying this environmental "debt"17.

This issue is more evident at the end-of-life (EOL) stage, with the PV waste stream projected

to reach 78 million tons by 20504. Current recycling infrastructure is inadequate, and most

EOL panels end up in landfills, where hazardous materials can leach into the environment18.

From a Life Cycle Assessment (LCA) perspective, module reliability is an imperative, as the

"use" phase is where the initial environmental impacts are reduced the most19;20. Defects

shorten this phase, increasing the relative environmental burden of manufacturing and EOL

management21. Therefore, asset longevity is a fundamental prerequisite for solar energy to

be a truly sustainable solution4.
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2.3 Taxonomy of Photovoltaic Defects and Failure Modes

A good understanding of failure modes is essential for developing effective diagnostic tools6.

This section provides a detailed taxonomy of PV defects, from the cell to the system level,

outlining their physical origins, impacts, and characteristic visual and thermal signatures8.

2.3.1 Cell-Level Defects and Anomalies

2.3.1.1 Hotspots

A hotspot is a localized area of a module operating at a significantly elevated tempera-

ture22. It occurs when current from healthy cells is forced through a damaged or shaded

cell, causing it to become reverse-biased and dissipate power as heat23. Common causes

include micro-cracks, partial shading, soiling and manufacturing defects8. Hotspots are a

severe failure mode, capable of causing permanent burn marks, glass breakage, and fire

risk8. Thermally, a hotspot appears as a well-defined square area of high temperature; a

∆T greater than 15 °C above adjacent cells is considered a serious defect24;25.

Figure 2.1: Example of a hotspots defects from soiling in the bottom corners of solar panels

2.3.1.2 Micro-cracks

Micro-cracks are microscopic fractures in the silicon wafer caused by mechanical or ther-

momechanical stress during manufacturing, transport, or operation (e.g., from heavy snow

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
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or wind)8;26. While some cracks have a negligible effect, those that electrically isolate a

portion of the cell cause direct power loss and can lead to severe hotspot formation8;27.

They are typically invisible to the naked eye but can be detected using electroluminescence

(EL) imaging, where they appear as dark, non-emissive lines28;29. Their thermal signature

is often indirect, manifesting as the hotspot they induce24;30.

2.3.1.3 Snail Trails

Snail trails are a form of discoloration on the cell surface resulting from a chemical reaction

between moisture, the silver paste of the grid fingers, and the encapsulant31;32. Moisture

ingress often occurs through pre-existing micro-cracks33. While the direct power loss from

snail trails is minor (<2%), their presence is a strong indicator of underlying micro-cracks,

which can cause significant power loss and hotspots34;35. Visually, they appear as thin, dark

lines following the cell’s grid pattern28. Thermally, the signature is that of the underlying

defect, often a hotspot36;37.

2.3.1.4 Potential-Induced Degradation (PID)

PID is caused by leakage currents flowing from the cells to the grounded module frame,

driven by a high voltage potential8. It is exacerbated by high temperature and humidity

and can lead to severe power loss, in some cases exceeding 50%8;38. While invisible in

its early stages, PID exhibits a highly characteristic thermal pattern: a "checkerboard" or

patchy arrangement of heated cells, typically starting at the modules located at the electri-

cally negative end of a string of panels in series24;28.

Figure 2.2: Potential-Induced Degradation (PID). (Top) Disposition of the panels in the string.

(Bottom) Infrared thermogram showing the characteristic "checkerboard" pattern of moder-

ately heated cells near the negative side of the string.
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2.3.1.5 Interconnect Failures

Failures in the solder joints connecting interconnect ribbons to cell busbars can result from

manufacturing defects or thermomechanical fatigue8. A disconnected ribbon creates an

open circuit, causing a significant drop in power output ( 35% for one failed ribbon)8. An

incomplete break can create a point of high resistance, leading to arcing, intense heat, and

a high fire risk38. The thermal signature is typically a very localized and intense hotspot at

the point of the failed connection28.

2.3.2 Module-Level Degradation and Failures

2.3.2.1 Encapsulant Delamination and Bubbles

Delamination is the loss of adhesion between module layers (e.g., glass-EVA or EVA-cell),

often initiated by manufacturing defects and exacerbated by moisture and heat23;38. It re-

duces light transmission and creates pathways for moisture ingress, leading to corrosion8;39.

Visually, it appears as "milky" or cloudy patches23. Thermally, delaminated areas appear as

irregularly shaped warmer regions due to the insulating effect of trapped air impeding heat

dissipation23.

2.3.2.2 Encapsulant Discoloration (Browning/Yellowing)

Long-term exposure to UV radiation and high temperatures can chemically degrade the EVA

encapsulant, causing it to turn yellow or brown8;40. This discoloration reduces transparency,

leading to a gradual reduction in power output41. Localized discoloration is a strong indicator

of an underlying hotspot, as the higher temperature accelerates the chemical degradation

of the encapsulant above it42.

Figure 2.3: Encapsulant discoloration. (Left) Visual image showing browning of the encap-

sulant over a cell. (Right) Thermogram confirming that the discolored cell is operating as a

hotspot.
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2.3.2.3 Backsheet Degradation

The backsheet provides mechanical protection and electrical insulation8. Degradation from

UV, temperature, and humidity can cause cracking, delamination, or chalking43. This is a

critical failure, as it compromises the module’s primary insulation, creating a severe electric

shock hazard and allowing moisture ingress that can lead to ground faults and string out-

ages44;45. While it has no direct thermal signature detectable from the front, its secondary

effects (hotspots, hot strings) are visible28.

2.3.2.4 Glass Breakage

Module glass can break from external impacts (e.g., hail) or manufacturing flaws46;47. This

results in a complete loss of environmental protection, leading to rapid corrosion, short

circuits, and a significant safety hazard8.

2.3.3 Balance-of-System (BOS) and Component Faults

2.3.3.1 Bypass Diode Failure

Bypass diodes protect cell substrings from hotspot formation when shaded24. A short-

circuited diode causes a fixed power loss (typically 33% or 66%) and produces a clear

thermal signature: the entire substring appears as a uniformly heated rectangle24.

Figure 2.4: Bypass diode failure. The thermogram shows one-third of the module uniformly

heated, a classic signature of a short-circuited or active bypass diode.
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2.3.3.2 Junction Box and Connector Faults

High-resistance connections in junction boxes or module connectors, caused by poor instal-

lation or corrosion, dissipate energy as heat8. This can lead to significant power loss and

represents a major fire hazard38. The thermal signature is a distinct, intense, and highly

localized hotspot centered on the faulty component25.

2.3.3.3 String and Inverter-Level Anomalies

An entire string of modules can go offline due to a blown fuse, disconnected cable, or inverter

malfunction5. This results in a total loss of power from that string5. The thermal signature

is unambiguous: the entire string of modules appears uniformly hot, as the sun’s energy is

converted in heat instead of electricity, creating a stark contrast with adjacent, operational

strings24.

2.4 Thermography Standards and Data Availability

Infrared thermography is the preeminent non-destructive technique for inspecting PV plants,

as nearly all failure modes alter a module’s thermal behavior48;49. However, acquiring reli-

able data requires adherence to rigorous standards9.

2.4.1 The IEC 62446-3 Standard for Outdoor Infrared Thermography

To ensure data is valid and comparable, inspections must follow the IEC 62446-3 stan-

dard50. Key requirements include:

• Solar Irradiance: A minimum of 600 W/m² is required to ensure sufficient current flow

to reveal thermal anomalies51.

• Environmental Conditions: Inspections need clear sky conditions, as passing clouds

create thermal transients. High wind speeds (> 10 m/s) should be avoided as they can

cool the module surface and mask defects51.

• Viewing Angle and Reflections: The camera should be positioned as close to per-

pendicular to the module surface as possible to avoid emissivity errors and, crucially,

to prevent solar reflections from obscuring the thermal data25.
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Figure 2.5: Comparison of thermographic inspection practices. (Right) An image acquired

under standardized conditions (high irradiance, no clouds, near-perpendicular view). (Left) A

poor quality image compromised by bad camera angle and sun glares, rendering it unusable

for diagnostics.

2.4.2 Data Acquisition: Manual vs Autonomous Aerial Systems

Manual, handheld inspections are time-consuming, costly, and pose safety risks, often

leading to incomplete sampling of large plants15;52. Unmanned Aerial Vehicles (UAVs)

equipped with radiometric thermal cameras have revolutionized PV inspection53. Drones

offer high speed (10 minutes/MW vs. 2-5 hours/MW for manual), 100% module coverage,

highly repeatable data quality ideal for repeated analysis in time, and significantly enhanced

safety53–56. This automated, standards-compliant data acquisition is an essential prerequi-

site for robust AI-based analysis57;58.

While drone-based thermography solves data acquisition, it creates a data analysis bottle-

neck, creating the need for research into automated pipelines using machine learning59.

However, the progress of these researches is critically hampered by the quality of public

datasets10;60.

2.4.3 Analysis of Public Datasets for Model Development

Robust and generalizable AI models depend on large, diverse, high-quality public datasets,

which represents a major bottleneck in the PV diagnostics field61–63. A review of existing

public datasets reveals several pervasive limitations:

• Lack of Radiometric Data: Most public datasets consist of 8-bit JPEG or PNG im-

ages where pixel values represent a color map, not temperature64–68. A model trained

on these learns color patterns, not physical temperature patterns, making it extremely

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



13

brittle and unable to perform quantitative analysis69. The scarcity of public datasets

containing true radiometric temperature data is a major impediment to progress70.

• Lack of Standardization: Many datasets are collected without adherence to the IEC

62446-3 standard, introducing significant noise from variable environmental condi-

tions71;72. Models trained on such inconsistent data learn spurious correlations and

fail to generalize to real-world field conditions73;74.

• Poor Annotation and Imbalance: Datasets often suffer from inaccurate labeling, a

limited number of defect classes, and severe class imbalance, making it difficult to

train models to identify rare but critical failure modes60;62.

• Lack of Diversity: Existing datasets are often collected from a small number of sites

with similar technologies and climates, limiting the generalizability of models trained

on them75;76.

Figure 2.6: Contrast between data types. (Left) A true radiometric thermal image where

pixel values correspond to temperature, enabling quantitative analysis. (Right) A typical 8-

bit JPEG from a public dataset, where colors are arbitrary and prevent robust, physics-based

analysis.

The confluence of these issues suggests a potential generalization problem, where high ac-

curacy figures reported in studies may be artifacts of testing on small, proprietary datasets10.

Without a high-quality, radiometric, and standardized benchmark dataset, it is impossible to

meaningfully compare methodologies and transition research into industry-ready tools69.
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2.5 Research Opportunities

This review has established the profound economic and environmental stakes of PV sys-

tem underperformance, with losses mounting into the billions of dollars and a widening

"O&M Gap" that necessitates automated solutions12. The complex, interconnected nature

of defect cascades underscores the need for early and accurate diagnostics38. While drone-

based thermography guided by the IEC 62446-3 standard is the definitive method for scal-

able data collection, its potential is unrealized due to an analysis bottleneck9;53.

With this review in problem domain and defectology a part of the research gap has been

identified: is the critical lack of large-scale, public, and standardized datasets containing

essential radiometric thermal data63;69. The current landscape of 8-bit, non-standardized

datasets risks a reproducibility crisis, producing models that are not robust or generalizable

to real-world conditions10. This dissertation is positioned to address this gap by developing

and validating novel detection algorithms designed specifically to operate on radiometrically

accurate thermal data collected in strict accordance with international standards.
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Chapter 3

State of the Art in Automated PV
Plant Analysis

3.1 Introduction

This chapter provides a review of the technical state of the art in the automated analysis

of UAS imagery for photovoltaic (PV) plant inspection. Building upon the economic and

environmental importance and public data need established in Chapter 2, this section eval-

uates the algorithmic foundations and existing system-level solutions for panel detection and

anomaly classification.

A central theme of this review is the dichotomy between computationally intensive, propri-

etary, cloud-based commercial systems and the emerging need for transparent, privacy-

preserving, and locally executable open-source alternatives. Commercial platforms offer

polished services at the cost of data sovereignty, algorithmic transparency, and significant

processing delays77. Conversely, open-source tools, while philosophically aligned with lo-

cal control, are often fragmented or exist as academic proofs-of-concept rather than robust,

deployable systems78. This analysis will systematically identify the technical and opera-

tional gaps, thereby positioning the unique contribution of this thesis: to bridge this divide by

developing a practical, open-source, and locally-runnable inspection framework.

3.2 Computer Vision Approaches for Panel Detection and Lo-

calization

The primary challenge in automated inspection is the accurate identification and delin-

eation of individual PV panels from aerial imagery, a critical prerequisite for any subsequent

anomaly analysis. The field is dominated by two main families of techniques: traditional

image processing methods, which are computationally lean and well-suited for local deploy-

ment, and deep learning methods, which represent the performance-driven state of the art

but carry a significant computational burden.
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3.2.1 Traditional Image Processing Techniques

These methods are foundational in computer vision and are particularly relevant to this

thesis due to their low computational overhead and their potential for implementation on

standard local hardware without reliance on cloud infrastructure. Their principles are well-

understood, making them transparent and auditable.

• Template Matching: The principle of template matching is to locate instances of a

small template image within a larger source image by sliding the template across the

source and calculating a similarity metric at each position79. The choice of metric is

crucial; Normalized Cross-Correlation (NCC) is particularly important for aerial PV in-

spection, as it provides a degree of invariance to the global changes in brightness and

contrast ubiquitous in outdoor imagery79. While basic template matching is sensitive

to scale and rotation, it can be quite powerful in cases where the pattern to match is

repeated and always very constant in shape and dimensions (like a PV module).

Figure 3.1: How template matching works, a template image is taken and in our case is

moved across the target image. The points where the match was higher are identified as

having a match.

• Hough Transform: The Hough Transform is a powerful feature extraction technique

used to find imperfect instances of shapes, such as lines, through a voting procedure

in a parameter space80. Its primary application in PV inspection is the detection of

the straight lines that form the rectangular boundaries of PV modules, typically after

an edge detection step using the Canny algorithm81. A critical application of this tech-

nique is the correction of geometric distortions inherent in aerial imagery. In the ortho-

mosaic reconstruction phase, by detecting the dominant sets of horizontal and vertical

lines, the Hough Transform allows for the computation of the necessary homography

to apply a corrective warp, simplifying subsequent segmentation and analysis81.
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3.2.2 Deep Learning-Based Object Detection

Methods based on Convolutional Neural Networks (CNNs) represent the current state of

the art in object detection accuracy but require significant computational power, typically

necessitating GPUs and favoring cloud-based processing. This paradigm contrasts with the

local-first objectives of this thesis.

The "You Only Look Once" (YOLO) family of algorithms has revolutionized real-time ob-

ject detection, with successive versions continuously improving the speed-accuracy trade-

off82;83. In PV inspection, these models have demonstrated exceptional performance, with

mean Average Precision (mAP) for panel detection often exceeding 95%83. For instance,

the ST-YOLO model reported an mAP@0.5 of 96.6% for defect detection84. This high ac-

curacy, however, is computationally demanding; a model like YOLOv8s contains over 11

million parameters and requires 28.4 GFLOPs for inference, making real-time processing

on standard hardware challenging84.

The choice of a detection algorithm, therefore, represents a fundamental engineering trade-

off. Deep learning models are architected for a "GPU-first" or "cloud-native" deployment,

while traditional methods like template matching are "local-first" and well-suited for appli-

cations where accessibility and data privacy are paramount. The selection of template

matching in this thesis is a deliberate decision that prioritizes these practical deployment

constraints over achieving the absolute peak accuracy reported in deep learning literature.

3.3 Machine Learning for Thermal Anomaly Classification

Once panels are localized, the subsequent task is to classify them based on their thermal

signatures to identify potential defects. This section reviews the two dominant paradigms for

this task: supervised learning, which requires pre-labeled training data, and unsupervised

learning, which identifies anomalies by detecting deviations from a learned model of normal

behavior.

3.3.1 Supervised Learning Techniques

Supervised methods learn a direct mapping from input data to a set of predefined anomaly

classes. Their efficacy is fundamentally tied to the quality and diversity of the labeled dataset

used for training. For the direct analysis of thermal imagery, Convolutional Neural Net-

works (CNNs) are the preeminent approach because they can automatically learn the com-

plex spatial patterns and thermal signatures that define defects85. Architectures ranging

from custom networks to established models like VGG16 and ResNet have demonstrated

consistently high performance, achieving fault classification accuracies of over 97% for var-

ious defect types85–87.

Beyond direct image analysis, other techniques excel at classifying pre-extracted thermal
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features. For instance, both Random Forest (RF) and Support Vector Machines (SVMs)

have been effectively used to classify specific faults, such as inverter issues or partial shad-

ing, based on statistical data derived from the thermal images88;89. A common hybrid strat-

egy also involves using a pre-trained CNN solely as a powerful feature extractor, with its

output then fed into a less computationally intensive classifier like an SVM for the final deci-

sion90.

3.3.2 Unsupervised Learning Techniques

Unsupervised methods are of practical importance where labeled data is scarce. They

operate by learning the statistical characteristics of "normal" PV panel behavior and flagging

significant deviations as anomalies. Several techniques are employed to build this model of

normalcy. For example, a One-Class SVM (1SVM) can be trained to define a boundary

that encloses the feature space of healthy operations, flagging any panel whose thermal

signature falls outside this boundary as anomalous91.

Similarly, generative models like Variational Autoencoders (VAEs) are trained to accu-

rately reconstruct thermal images of healthy panels; a high reconstruction error on a new

panel therefore signals a potential defect92. The Isolation Forest algorithm operates on

a related principle, identifying anomalies not by reconstruction but by their ease of isola-

tion. Since defects are "few and different," their corresponding data points are more easily

separated from the dense cluster of normal panel data in a decision tree structure92.

The scarcity of comprehensive, labeled public datasets for PV defects poses a significant

challenge for supervised learning. Unsupervised methods circumvent this bottleneck, of-

fering a highly practical path for deployment by requiring only data from normal operations,

which is abundant.

3.4 Review of Existing Systems and Solutions

This section transitions from individual algorithms to an analysis of integrated systems, eval-

uating the current landscape of academic, open-source, and commercial solutions.

3.4.1 Academic and Open-Source Implementations

The open-source domain provides invaluable building blocks but generally lacks the end-to-

end integration and robustness of commercial products, the only complete software pipeline

is PV Hawk:
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Figure 3.2: A screenshot of the GUI of the open-source PV Hawk viewer

PV-Hawk stands out as a comprehensive open-source system for automated PV inspection.

It is a command-line tool that takes drone video and GPS data, performs a 3D reconstruc-

tion with OpenSFM, segments modules, and extracts their geocoordinates for mapping, all

designed for local processing78;93. A companion desktop application allows for visualization

and analysis94;95. While demonstrating the feasibility of a local pipeline, its author notes its

status as a "proof-of-concept" with potential instability, highlighting a clear gap for a more

robust open-source alternative78.

The main difference between the approach taken by PV Hawk and this Thesis Project is in

the starting data: PV Hawk directly uses the Images or video frame from the drone, this

approach needs a Structure-From-Motion reconstruction to geolocate the modules correctly

but it can be hindered by various factors. Many researches have highlighted that the use

of orthomosaics is much more accurate and much less error prone96;97, so in the following

Chapter 4 precisely this method was used.

Beyond PV-Hawk, the open-source landscape is fragmented. Numerous repositories exist

but typically serve narrow purposes, such as providing datasets98 or specific algorithmic

implementations presented as feasibility studies99. This fragmentation underscores the lack

of a unified, production-ready open-source system for PV plant operators.

3.4.2 Commercial Cloud-Based Platforms

The dominant commercial model is the polished, cloud-based Software-as-a-Service (SaaS)

platform, which abstracts away technical complexities but introduces trade-offs in cost, trans-

parency, turnaround time, and data privacy.
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Figure 3.3: A sample of the available commercial cloud-based SaaS solutions: Drone De-

ploy (Left), SiteMark (Center) and RaptorMaps (Right)

The most used leading platforms include DroneDeploy, a versatile platform serving multiple

industries100; Raptor Maps, a highly specialized platform focused exclusively on the solar

industry101; and Sitemark, another solar-focused platform offering unique rapid-analysis

solutions102.

3.4.2.1 Criticalities of Commercial Solutions

A critical examination of these platforms reveals a consistent operational model with several

key characteristics:

• Processing Model: All major commercial solutions are fundamentally cloud-based;

users must upload their imagery to the company’s servers for processing100.

• Turnaround Time: While premium offerings promise results in hours103;104, standard

service tiers can be substantially slower, with some platforms specifying turnaround

times of 7 to 20 days105. This long wait stands in stark contrast to the near-instant

feedback possible with local processing.

• Algorithmic Transparency: These platforms market their "proprietary AI" as "black

boxes," providing no details about the models used, the data they were trained on, or

their performance metrics101. An open-source solution offers complete auditability.

• Data Privacy and Sovereignty: This is a critical distinction. The privacy policies of

major platforms explicitly state that customer data may be used to "monitor, analyze

and improve the performance of the Services"106;107. This confirms that the client’s

operational data is a raw material used to enhance the vendor’s core AI asset. For

plant owners who consider their data proprietary, this is a significant concern108. A

local system provides absolute data sovereignty.

This analysis reveals that the business model of commercial platforms is centered on their

proprietary AI, which is continuously improved using client data. The proposed system in

this thesis offers a fundamentally different value proposition: it is a tool, not a service, where

the user retains complete ownership and control of their data.
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3.5 Gap Analysis and SoTA Limitations

This final section synthesizes the findings from the preceding review to construct a com-

pelling argument for the novelty and necessity of the research presented in this thesis.

The review of the state of the art reveals a significant disparity in the landscape of automated

PV inspection tools. On one side, commercial solutions offer polished, end-to-end systems

but are built on a proprietary, cloud-based, "black-box" model, introducing critical issues

regarding data privacy, transparency, and cost100. On the other side, academic and open-

source solutions, while philosophically aligned with local control, are fragmented and often

immature, lacking a unified, robust, and user-friendly system for day-to-day operations78.

The unmet need is for a solution that is simultaneously open-source, end-to-end, locally-

executable on standard hardware, compliant with IEC standards, that uses Orthomosaic

images, and privacy-preserving, ensuring sensitive data remains entirely within the owner’s

control.
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Chapter 4

Software Interface and Methods

This chapter provides a comprehensive exposition of the system architecture and the multi-

stage methodology developed for the automated detection of thermal anomalies in photo-

voltaic (PV) plants. The system is implemented as a cohesive software solution, the "Solar

PV Anomaly Detection Suite," featuring a Graphical User Interface (GUI) designed to guide

an operator through a structured workflow. The methodology emphasizes a modular, local-

first processing pipeline, user-in-the-loop control, and the synergistic integration of advanced

image processing with machine learning techniques.

4.1 Orthophoto-Centric Workflow Rationale

As discussed in the preceding State of the Art review, existing open-source frameworks such

as PV-Hawk often operate directly on raw aerial videos and their associated metadata. This

project deliberately diverges from that approach by adopting an orthophoto-centric work-

flow. The system is architected to ingest pre-processed orthomosaics, which are generated

beforehand using specialized photogrammetry software. While the commercial package

Agisoft Metashape was utilized for this research, the workflow is compatible with any tool

capable of producing high-quality GeoTIFF orthomosaics, including open-source solutions

like WebODM.

This strategic decision to decouple the analysis pipeline from the initial Structure from Motion

(SfM) and orthomosaic reconstruction phase offers several advantages. It allows operators

to use best-in-class, established tools for photogrammetry and focuses the scope of this

project entirely on the novel aspects of panel detection, analysis, and classification.

However, the importance of the reconstruction quality cannot be overstated. The fidelity of

the input orthomosaics is imperative for the success of the entire downstream pipeline. A

high-quality survey and reconstruction, conducted in strict adherence to the IEC 62446-3

standard, is essential for minimizing artifacts such as sun glare. Specular reflection from

panel surfaces can saturate both RGB and thermal sensors, corrupting the underlying data

and rendering accurate detection and quantitative thermal analysis impossible.
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Figure 4.1: The critical impact of reconstruction quality on data fidelity. A poor reconstruction

(left) exhibits significant sun glare and artifacts, while a high-quality reconstruction (right)

provides clean data suitable for analysis.

4.2 System Architecture and Data Flow

The "Solar PV Anomaly Detection Suite" is designed as a modular desktop application that

guides the user through a sequential analysis pipeline. The architecture, as depicted in Fig-

ure 4.2, is structured around a series of distinct processing modules, each corresponding to

a major stage of the workflow. This modularity ensures a logical progression of tasks, from

data ingestion to the final generation of reports. The primary data objects—RGB and ther-

mal image layers, panel detections, and thermal statistics—flow between these modules,

with each stage enriching the data for the next. The system is designed for local execution,

ensuring that all data and processing remain on the operator’s machine, thus guaranteeing

data sovereignty and privacy.
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Figure 4.2: A high-level diagram illustrating the system’s architecture and the logical flow of

data between its core processing modules.

4.3 The Graphical User Interface (GUI)

The entire system is encapsulated within a user-friendly GUI, which serves as the primary

command and control center for all operations. The interface is organized into three main

areas: a persistent "Workflow" panel on the left, a main interactive view in the center, and

a context-sensitive control panel that appears on the right. The Workflow panel provides

access to the distinct modules of the application: Inputs, Alignment, Detection, Segmen-
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tation, Models, Classification, and Outputs. This structure provides a clear and intuitive

step-by-step guide for the user, from getting started to exporting the final results.

Figure 4.3: The main welcome screen of the Solar PV Anomaly Detection Suite, outlining

the six primary workflow sections accessible via the left-hand navigation panel.

4.4 Module 1: Input and Alignment

4.4.1 Data Ingestion

The workflow begins in the "Inputs" section, where the user uploads the two foundational

GeoTIFF files: the three-channel RGB orthophoto and the single-channel radiometric ther-

mal orthophoto. The system validates these inputs to ensure they are in the correct format

before proceeding.

4.4.2 Manual Image Alignment

Upon successful data ingestion, the operator moves to the "Alignment" module. Here, the

GUI presents the two orthophotos side-by-side on an interactive map interface. To rectify

minor misalignments between the layers, the system implements a user-driven alignment

procedure based on a 2D projective transformation.
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Figure 4.4: A projective transformation: placing four pair of points is able to unequivocally

define a transformation for the entire image.

The user is prompted to place at least four homologous control points on each image. The

more precise the placement of these points, the better the resulting alignment. Once the

points are set, the system computes the transformation matrix that warps the thermal layer

coordinates system to precisely match the one of the RGB layer. This accurate, user-verified

alignment is fundamental for all subsequent stages.

Figure 4.5: The user interface for the Alignment module. The operator places corresponding

control points (blue markers) on the RGB (left) and thermal (right) orthophotos to enable a

precise affine transformation.

4.5 Module 2: The Panel Detection Pipeline

The core of the system’s analytical capability resides in the "Detection" module. A key

architectural decision was to execute the detection process independently on the RGB and

thermal layers to ensure that the bounding box for each detected panel is perfectly tailored
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to its respective image data.

4.5.1 Core Detection via Normalized Cross-Correlation

The primary detection algorithm is a robust implementation of template matching based

on Normalized Cross-Correlation (NCC). The process shown in 4.7 is initiated by the user

defining a panel group and its configuration (e.g., rows and columns) on the map. This

generates a grid from which multiple panel templates are automatically extracted. Using

multiple templates builds a more resilient matching model that can account for variations in

panel appearance.

Figure 4.6: A special implementation of the NMS algorithm was used since the images are

very large, for a small plant more than 2 million panels where detected and doing an IoU

check for all of them is exponentially slower.

The operator can then fine-tune the detection using sliders for ‘Template Matching Thresh-

old‘ and ‘NMS IoU Threshold‘ before running the main matching process. As seen in 4.6,

During the NMS (Non-Maximum Suppression) phase, each detection is spatially binned

together with others nearby, tis allows for an exponentially faster IoU check between the

detections instead of doing the check on all detections in a single bin.

Furthermore a novel feature was introduced for the thermal detection phase to enhance

robustness against hotspots, allowing an operator to set a temperature cap for the NCC

calculation, preventing high-temperature anomalies from causing a template mismatch.
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Figure 4.7: The UI for the core detection step. The operator defines a grid to create

templates and adjusts parameters for template matching and Non-Maximum Suppression

(NMS). The initial raw detections are shown as small green boxes.

Figure 4.8: Example of thermal (left) and RGB (right) panel templates automatically ex-

tracted by the system for use in the NCC algorithm.

4.5.2 Advanced Detection Refinement

To maximize detection accuracy, the system provides a suite of advanced algorithms to

refine the initial results. These tools leverage the inherent spatial structure of PV plants. As

shown in Figure 4.9, the refinement steps include:

• Spatial Clustering and Grid Fitting: This algorithm first employs the DBSCAN algo-

rithm to group detected panels into spatially coherent blocks. Subsequently, a custom

algorithm fits a regular grid to each cluster, allowing the system to programmatically

identify and remove false positives and infer the locations of missed panels. The user

can control parameters such as ‘Clustering Distance‘ and ‘Delta Jitter‘.

• Border Outlier Removal: A subsequent step allows for the removal of isolated outlier

panels based on a confidence threshold.
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• Cellular Automaton for Gap Filling: A novel algorithm inspired by Conway’s Game

of Life is implemented to intelligently fill small, isolated gaps within a regular panel

array based on the number of neighboring panels.

Figure 4.9: The various algorithms removing unwanted detections (Top). The UI for the

advanced detection refinement pipeline, showing the controls for DBSCAN/Grid Fitting and

Border Outlier Removal. The map displays the refined panel detections. (Bottom)

4.6 Module 3: Segmentation and Feature Extraction

The "Segmentation" module is where the detections from the two layers are unified and

analyzed. With complete and verified detection sets, the first step is to establish a one-to-

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



31

one correspondence between them by calculating the Intersection over Union (IoU) of the

pairs of bounding boxes (Thermal and RGB). A pair is successfully established if their IoU

exceeds a predefined threshold.

For each successfully matched pair, the system extracts the cropped RGB and thermal

images and computes a vector of key thermal statistics (mean, median, min/max temper-

ature, standard deviation, and variance). All associated data is then stored in a structured

database.

This module also functions as an interactive decision-support and labeling tool. The GUI

presents the plant on the map, with each panel color-coded based on a selected thermal

indicator. A plant-wide histogram with interactive sliders allows the operator to dynamically

define thresholds for "nominal" and "anomalous" ranges, providing immediate visual feed-

back. By clicking on a panel, the operator can view its detailed information, including its

pairing quality, thermal data, and the cropped thermal and RGB images. The user can then

save labels based on these visual analytics, creating a dataset for domain-expert labeling

and subsequent model training.

Figure 4.10: The interactive analysis dashboard within the Segmentation module. The inter-

face displays thematically colored panels, a plant-wide thermal distribution histogram with

user-controlled thresholds, and a detailed information card for the selected panel.
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Figure 4.11: A detailed view of a single panel pair, showing the radiometric thermal image

with its temperature scale and the corresponding high-resolution RGB image.In this case

the Hot-Spot is caused by a physical obstruction like soiling or bird deposits.
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4.7 Module 4: Machine Learning Model Training

The "Models" section of the suite is more intended for the users that want to use the tool as a

dataset generation tool for research purposes, it provides a comprehensive environment for

training, testing, and evaluating various machine learning models. The user begins by load-

ing a labeled CSV file (generated in the previous step or prepared externally). The interface

allows for the training of multiple model types—including binary, multi-class, and regression

models—on the thermal feature data. For each model, such as the Binary Random Forest

shown in Figure 4.12, the UI displays training progress, training time, and a full suite of per-

formance metrics for both training and testing sets, including accuracy, precision, recall, and

F1 score. A confusion matrix is also generated to provide a clear visual assessment of the

model’s classification performance.

Figure 4.12: The user interface for the Machine Learning Models module. This view shows

the results of training and testing a Binary Random Forest classifier, including performance

metrics and a confusion matrix.

4.8 Module 5: Classification and Analysis

Once a model has been trained and saved, the "Classification" module is used to apply

it to the entire dataset of detected panels. The user can load a pre-trained model from

the previous step or a custom one and run the classification process. The results are dis-

played interactively on the map, with each panel color-coded according to its predicted class

(e.g., green for ’not defective’, red for ’hot spot’). Clicking on a panel reveals its full ther-

mal data alongside the predictions from multiple models (e.g., ‘multiclass_nn‘, ‘binary_rf‘,
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‘regression_nn‘). This provides a powerful tool for rapidly assessing the health of the entire

plant based on the learned knowledge encapsulated in the trained models (even if they were

trained from a different plant).

Figure 4.13: The Classification module interface. The map visualizes the model’s predic-

tions, with a detailed pop-up showing the predicted class (’Hot Spot’) for the selected panel,

alongside its thermal data and detailed classification results on the right.

4.9 Module 6: Outputs and Reporting

The final "Outputs" module provides a clean, tabular summary of all detected anomalies

from the classification step. The report lists each anomalous panel’s ID, its predicted anomaly

type, the model’s confidence in that prediction, and its precise geographic location. This ac-

tionable report can be exported and used by maintenance teams to locate and address

specific defects in the field, thus closing the loop from automated data analysis to physical

remediation.

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



35

Figure 4.14: The Outputs section, presenting a final, exportable report of all detected

anomalies with their type, confidence level, and location.
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Chapter 5

Experiment and Results

This chapter presents a comprehensive evaluation of the developed Solar PV Anomaly De-

tection Suite. The primary objective of the experiments is to validate the efficacy and ef-

ficiency of the entire end-to-end pipeline, from data ingestion to final classification. The

evaluation is structured to assess each major component of the system, focusing first on the

experimental conditions, followed by the performance of the panel detection and anomaly

classification modules. The results underscore the system’s capacity not only as a functional

diagnostic tool but also as a powerful framework for creating high-quality, labeled datasets

for future research.

5.1 Experimental Setup

5.1.1 Dataset and Hardware

The experiments were conducted on a diverse dataset aggregated from 13 different photo-

voltaic plants located in Italy. These sites, summarized in Table 5.1, comprise 10 large-scale

ground-mounted fields and 3 industrial rooftop installations, ensuring the system was tested

against a variety of layouts, panel types, and environmental conditions.

For each site, paired RGB and thermal aerial surveys were conducted. The raw imagery,

totaling approximately 73,000 images (36,500 per sensor type), was processed separately

using Agisoft Metashape to generate two coregistered orthomosaics per plant. The resulting

orthophotos exhibit a high spatial resolution, with an average Ground Sampling Distance

(GSD) of approximately 0.5 cm/pixel for the RGB layer and 1.5 cm/pixel for the thermal

layer.

All processing tasks, from orthomosaic image alignment to model inference, were executed

on a mid-range laptop equipped with an 8-core AMD CPU (2020) and 16 GB of RAM. No

dedicated GPU was required for the core pipeline, underscoring the system’s accessibility

and computational efficiency.
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Table 5.1: Summary of the aggregated dataset used for system evaluation.

Parameter Value

Number of PV Plants 13

- Ground-Mounted 10

- Industrial Rooftop 3

Total Raw Images ~73,000

Output Orthomosaics 26 (13 RGB, 13 Thermal)

Average RGB GSD ~0.5 cm/pixel

Average Thermal GSD ~1.5 cm/pixel

Processing Hardware Mid-range Laptop (No dGPU)

5.1.2 System Performance and Scalability

The entire software pipeline was tested on all 13 orthomosaic pairs. The system’s architec-

ture, while currently executed as a single-threaded desktop application, was designed with

modularity to facilitate future optimization for vertical or horizontal scaling. Table 5.2 details

a representative performance breakdown for the processing of a large-scale plant compris-

ing 6,857 panels. The processing times demonstrate the system’s efficiency, with the entire

workflow from orthophoto alignment to classification completing in under four minutes. The

most time-consuming step remains the initial template matching, whereas subsequent re-

finement and analysis stages are comparatively rapid.

Table 5.2: Representative performance breakdown for a 6,857-panel PV plant.

Processing Module Execution Time (s)

Image Alignment 1

Panel Detection

- Template Matching 142

- DBSCAN Clustering 56

- Refinement 1

Panel Segmentation 43

Classification (Inference) 2-10

Total Approximate Time ~250

5.2 Evaluation Metrics

To quantitatively assess the system’s performance, a set of standard evaluation metrics was

employed for the distinct tasks of detection and classification.
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For panel detection, the primary metric is the True Positive Rate (TPR), also known as

Recall or Sensitivity. It is defined as:

TPR =
TP

TP + FN

where TP (True Positives) is the number of correctly identified panels and FN (False Neg-

atives) is the number of missed panels.

For anomaly classification, models were evaluated using two primary metrics:

• Accuracy: The ratio of correctly classified instances to the total number of instances.

• F1-Score (Weighted Average): The weighted average of the F1-scores for each

class, which is the harmonic mean of precision and recall. This metric is particularly

useful for imbalanced datasets.

For the regression models, which were trained to predict a continuous value (expert-

assigned confidence), two additional metrics were used:

• R-squared (R2): The coefficient of determination, representing the proportion of the

variance in the dependent variable that is predictable from the independent variables.

• Mean Absolute Error (MAE): The average of the absolute differences between the

predicted values and the actual values.

For direct comparison with classifiers, the continuous output of the regression models was

subsequently label-encoded into discrete classes to calculate accuracy and F1-scores.

5.3 Results of Panel Detection

The panel detection module, combining template matching with the advanced refinement

algorithms, demonstrated exceptionally high performance across all tested sites. Table 5.3

highlights the results onall the plants and the average performance across the entire dataset.
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Table 5.3: Panel detection performance across all 13 PV plants, highlighting variation be-

tween installation types.

Plant Type Total Panels Detected (TP) Missed (FN) TPR

Ground-Mounted (Site A) 6,857 6,848 9 99.87%

Ground-Mounted (Site B) 11,255 11,236 19 99.83%

Ground-Mounted (Site C) 3,657 3,657 0 100.00%

Ground-Mounted (Site D) 8,421 8,415 6 99.93%

Ground-Mounted (Site G) 12,877 12,871 6 99.95%

Ground-Mounted (Site I) 11,298 11,284 14 99.88%

Ground-Mounted (Site J) 8,935 8,928 7 99.92%

Ground-Mounted (Site K) 10,880 10,874 6 99.94%

Ground-Mounted (Site L) 19,650 19,638 12 99.94%

Ground-Mounted (Site M) 7,542 7,539 3 99.96%

Roof-Mounted (Site E) 4,776 4,516 260 94.56%

Roof-Mounted (Site F) 1,244 1,209 35 97.19%

Roof-Mounted (Site H) 16,521 16,179 342 97.93%

Overall (All 13 Sites) 123,913 123,194 719 99.42%

The results strongly suggest that for structured environments like PV plants, the imple-

mented classical computer vision approach is highly effective. It achieves near-perfect de-

tection rates without the significant computational overhead associated with deep learning

models such as YOLO or Mask R-CNN. These alternative models would require substantial

GPU memory and processing power for inference on orthomosaics that can be as large as

40, 000× 26, 000 pixels.

The slightly lower average TPR of 99.42% is primarily attributed to the challenges posed

by rooftop installations, where metallic roofing elements, HVAC units, and complex shadow-

ing occasionally led to false negative or false positive detections. Nonetheless, the overall

performance robustly validates the chosen detection strategy.

5.4 Results of Anomaly Classification

5.4.1 Methodology and Ground Truth Creation

A key objective of this work was to validate a pipeline that could facilitate the rapid creation

of labeled datasets. The anomaly classification experiment was designed to reflect this.

Instead of relying on a purely Computer Vision (CV) approach, which would necessitate

extensive manual labeling of images, this Thesis focused on training simple, fast machine

learning models using statistical thermal features. The features used for training were: Tmax,
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Tmean, Tmedian, Tstd, Tvar, and Tmin.

These variables were calculated during thepanel pairing phase for each panel found with

the template matching.

The ground truth dataset was created using a semi-automated, expert-in-the-loop workflow

enabled by the software’s UI:

1. Candidate Pre-selection: Using the interactive histogram tool, loose thermal thresh-

olds were applied to an unlabeled dataset of over 10,000 panels. This step filtered the

dataset down to approximately 800 panels exhibiting potentially anomalous thermal

signatures.

2. Expert Labeling: This reduced set of "suspicious" panels was exported and provided

to a certified expert in PV thermography, who assigned a ground truth label to each

one. The multiclass labels included: Normal, Hot-spot, Module-Defect, Diode, and

PID.

3. Dataset Balancing: The expert-labeled dataset was then re-balanced with a random

sample of panels previously classified as "normal" to create a final, representative

training dataset.

This methodology drastically reduces the manual labeling burden and demonstrates a prac-

tical path to creating large-scale, high-quality ground truth datasets. The final dataset was

appropriately scaled and normalized with a robust scaler before being used for model train-

ing and testing.

5.4.2 Model Performance

The prepared dataset was used to train and test a suite of models directly within the appli-

cation’s UI. The models were chosen for their simplicity and inference speed, aligning with

the goal of demonstrating pipeline viability. The performance of these models on the training

and test sets is summarized in Table 5.4 and Table 5.5, respectively.

Table 5.4: Model performance on the training set.

Model Accuracy (Weighted) F1-Score (Weighted) R² MAE

RF Binary Classifier 0.996 0.996 N/A N/A

RF Multiclass 0.998 0.998 N/A N/A

NN Multiclass 0.995 0.995 N/A N/A

LR Multiclass 0.979 0.979 N/A N/A

NN Regression Multiclass 0.989 0.912 0.96 0.04

RF Regression Multiclass 0.994 0.956 0.98 0.02

XGBoost Regression Multiclass 0.997 0.963 0.98 0.01

End-to-End Pipeline for Thermal Anomaly Detection in PV Plants via Unmanned Aerial Vehicle
(UAV) Thermography



42 Experiment and Results

Table 5.5: Model performance on the unseen test set.

Model Accuracy (Weighted) F1-Score (Weighted) R² MAE

RF Binary Classifier 0.921 0.720 N/A N/A

RF Multiclass 0.925 0.794 N/A N/A

NN Multiclass 0.938 0.828 N/A N/A

LR Multiclass 0.865 0.712 N/A N/A

NN Regression Multiclass 0.889 0.817 0.79 0.28

RF Regression Multiclass 0.917 0.856 0.85 0.19

XGBoost Regression Multiclass 0.918 0.872 0.88 0.13

Table 5.6: Representative confusion matrix for the XGBoost multiclass classifier on a bal-

anced test set of 3,930 panels.

Predicted Class

True Class Normal Hot-Spot PID/Multi-HS Diode Offline-Module Total

Normal 1953 38 0 0 0 1991

Hot-Spot 95 1110 42 11 0 1258

PID/Multi-HS 8 75 319 5 0 407

Diode 0 28 12 135 4 179

Offline-Module 0 1 3 0 91 95

Total 2056 1252 376 151 95 3930

5.5 Synthesis of Experimental Findings

The experimental results presented in this chapter successfully validate the core hypothe-

ses of this thesis. The panel detection pipeline, which combines classical computer vision

techniques with novel refinement algorithms, achieved an outstanding average True Posi-

tive Rate of 99.42% across a diverse dataset of 13 PV plants. This performance confirms

that for highly structured environments like PV installations, a computationally efficient, non-

deep-learning approach can yield results comparable to the state-of-the-art while running

on standard local hardware.

Furthermore, the anomaly classification experiments demonstrated the viability of using sta-

tistical thermal features for rapid and accurate defect identification. The good performance

of models like the XGBoost Regressor (F1-Score of 0.872 on the test set) underscores that

even the simple feature based approach is quite powerful. Critically, the entire experimen-

tal process showcased the system’s dual capability: not only as a robust analysis tool but

also as a powerful, semi-automated framework for the rapid creation of high-quality, expert-
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labeled datasets from radiometric data. The implications of these findings, the innovations

they represent, and the limitations of the current work will be critically examined in the fol-

lowing chapter.
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Chapter 6

Discussion

This chapter provides a critical interpretation of the experimental results, contextualizing

them within the research objectives and the state-of-the-art. The analysis focuses on the

meaning behind the performance metrics, the core innovations of the developed system, its

inherent limitations, and its specific positioning against existing solutions.

6.1 Interpretation of System Performance

The system’s panel detection performance, with a 99.42% average True Positive Rate,

strongly validates the decision to use a computationally efficient, classical computer vision

pipeline. For a geometrically regular problem like locating PV modules, the implemented

hybrid approach of template matching and spatial refinement proves to be a highly effective

alternative to resource-intensive deep learning models. This result demonstrates that tai-

lored, "local-first" algorithms can achieve state-of-the-art accuracy on standard hardware, a

key objective of this thesis.

The anomaly classification results further support this philosophy. The success of models

using simple statistical thermal features (e.g., XGBoost Regressor with a 0.872 F1-score

on the test set) confirms that a full image-based CNN is not always necessary for accurate

defect identification. The performance drop from the training to the test set is an expected

outcome in machine learning, highlighting not a system failure, but the crucial need for

diverse training data to improve model generalization. The system’s strength, therefore, lies

in its demonstrated ability to serve as a platform for creating and iteratively improving these

models as more data becomes available.

6.2 Innovations and Contribution

The primary contribution of this research is the development of a solution that occupies a

unique and under-served gap in the PV inspection landscape. Its key innovations are:
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• A Privacy-Preserving, Local-First Architecture: In direct contrast to the dominant

cloud-based commercial model, this work delivers a fully local application. This design

choice grants the operator absolute data sovereignty, resolving the critical privacy and

data ownership concerns associated with uploading sensitive operational data to third-

party servers.

• A Robust Orthomosaic-Centric Workflow: By standardizing on high-quality ortho-

mosaics as input, the system decouples analysis from the complex photogrammetry

process. This modularity allows operators to leverage best-in-class tools for recon-

struction and ensures a more reliable and accurate data foundation than systems that

process raw video feeds directly.

• A Dual-Purpose Analysis and Dataset Creation Framework: The system func-

tions not only as a diagnostic tool but also as a powerful framework for addressing the

well-documented lack of high-quality, radiometric public datasets. Its semi-automated,

expert-in-the-loop labeling capabilities provide a practical pathway for the rapid gen-

eration of large, verified datasets, a significant contribution to the broader research

community.

6.3 Limitations and Future Directions

A critical evaluation of this work must acknowledge its limitations, which naturally point to-

ward avenues for future research. The system’s performance is fundamentally dependent

on the quality of the input orthomosaics; artifacts from poor surveys or reconstructions can

degrade accuracy. While the current single-threaded implementation is highly performant

for most plants, its scalability for mega-scale installations could be enhanced through paral-

lelization. Finally, the generalizability of any machine learning model is bound by its training

data; future work should focus on using the tool to aggregate data from a wider variety of

sites and technologies to build more universally robust models, and even better the imple-

mentation of Computer Vision models that use the segmented panels for defect classifi-

cation, offering a much more robust approach that will probably be able to outperform the

simple models trained on tabular data.

6.4 Comparison with the State of the Art

When positioned against existing solutions, the system developed in this thesis fills a clear

gap. Compared to commercial platforms like Raptor Maps, it offers a fundamentally different

value proposition: it is a tool, not a service, prioritizing data control, transparency, and

immediate on-site results over a polished but opaque cloud service. In contrast to open-

source proofs-of-concept like PV-Hawk, this thesis delivers a complete, user-friendly and
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robust end-to-end system with a GUI, representing a significant step forward in usability and

practical deployment. It successfully combines the functionality of a commercial product

with the transparent, accessible, and privacy-centric philosophy of open-source software,

without compromising on data acquisition standards and radiometric processing.
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Chapter 7

Conclusions

The rapid global expansion of photovoltaic installations has created an urgent need for scal-

able, efficient, and reliable methods for plant inspection and maintenance. Performance

losses due to undetected defects lead to billions of dollars in economic damages annu-

ally and challenge the long-term environmental sustainability of solar assets. The widening

"O&M Gap," where capacity growth outpaces the growth of skilled maintenance personnel,

underscores the unscalability of manual inspection and necessitates the development of

automated solutions.

This challenge was addressed through the design, implementation, and validation of a

PV Anomaly Detection Suite, a novel, end-to-end software solution for automated thermal

anomaly detection. The system was architected with a "local-first" philosophy, ensuring

all processing and data remain on the operator’s machine, thereby guaranteeing absolute

data sovereignty and privacy. By adopting an orthomosaic-centric workflow and integrating

a hybrid of classical computer vision and modern machine learning techniques, the suite

provides a robust, computationally efficient pipeline accessible to users without specialized

GPU hardware.

The experimental validation, conducted on a diverse dataset of 13 PV plants, confirmed

the system’s efficacy. The panel detection module achieved an outstanding average True

Positive Rate, demonstrating that tailored classical algorithms can rival the accuracy of deep

learning models for structured environments. Furthermore, classification models trained

on simple, extracted thermal features achieved good performance validating a rapid and

efficient approach to anomaly identification.

Furthermore, this Thesis moves beyond a purely analytical function, providing an effective

framework for the rapid, semi-automated creation of high-quality, radiometric, and expert-

labeled datasets, a valuable resource that can fuel future research and development in the

field.

Future work should focus on several key enhancements. System scalability for mega-scale

plants can be improved through parallel processing, and workflow efficiency can be in-

creased by automating some of the manual steps. Critically, the system’s dataset creation
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capabilities should be leveraged to train advanced computer vision models, such as YOLO

like models, U-Nets or other Convolutional Neural Networks on the segmented panel im-

ages. This would enable classification based on learned spatial patterns, like the distinct

signatures of PID or diode failures, moving beyond statistical features to achieve more nu-

anced and accurate defect identification. Concurrently, continued aggregation of data from

diverse sites will be essential for building more universally robust models.

In conclusion, this thesis has successfully developed and validated a comprehensive solu-

tion that lowers the barriers to adopting advanced automated diagnostics. By providing an

open, private, and effective tool, this work contributes to ensuring the long-term reliability,

profitability, and sustainability of the global solar energy infrastructure.
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